[1]
Y. Xue, A review on intelligent wearables: Uses and risks, Hum. Behav. Emerg. Technol. 1(4) (2019) 287–294.
Google Scholar
[2]
M.C. Schall, R.F. Sesek, L.A. Cavuoto, Barriers to the adoption of wearable sensors in the workplace: A survey of occupational safety and health professionals, Hum. Factors J. Hum. Factors Ergon. Soc. 60(3) (2018) 351–362.
DOI: 10.1177/0018720817753907
Google Scholar
[3]
N. Hashiguchi, K. Kodama, Y. Lim, C. Che, S. Kuroishi, Y. Miyazaki, T. Kobayashi, S. Kitahara, K. Tateyama, Practical judgment of workload based on physical activity, work conditions, and worker's age in construction site, Sensors 20(13) (2020) 3786.
DOI: 10.3390/s20133786
Google Scholar
[4]
M.E. Porter, J.E. Heppelmann, How smart, connected products are transforming competition, Harv. Bus. Rev. (2014).
Google Scholar
[5]
T. Gregor, M. Krajčovič, D. Więcek, Smart connected logistics, Procedia Eng. 192 (2017) 265–270.
DOI: 10.1016/j.proeng.2017.06.046
Google Scholar
[6]
X. Xu, M. Zhong, J. Wan, M. Yi, T. Gao, Health monitoring and management for manufacturing workers in adverse working conditions, J. Med. Syst. 40(10) (2016) 222.
DOI: 10.1007/s10916-016-0584-4
Google Scholar
[7]
T. Page, A forecast of the adoption of wearable technology, Int. J. Technol. Diffus. 6 (2015) 12–29.
Google Scholar
[8]
L. Piwek, D.A. Ellis, S. Andrews, A. Joinson, The rise of consumer health wearables: Promises and barriers, PLOS Med. 13(2) (2016) e1001953.
DOI: 10.1371/journal.pmed.1001953
Google Scholar
[9]
A. Garg, J.M. Kapellusch, Applications of biomechanics for prevention of work-related musculoskeletal disorders, Ergonomics 52(1) (2009) 36–59.
DOI: 10.1080/00140130802480794
Google Scholar
[10]
W.S. Marras, R.G. Cutlip, S.E. Burt, T.R. Waters, National occupational research agenda (NORA) future directions in occupational musculoskeletal disorder health research, Appl. Ergon. 40(1) (2009) 15–22.
DOI: 10.1016/j.apergo.2008.01.018
Google Scholar
[11]
S.R. Dhole, A. Kashyap, A.N. Dangwal, R. Mohan, A novel helmet design and implementation for drowsiness and fall detection of workers on-site using EEG and Random-Forest Classifier, Procedia Comput. Sci. 151 (2019) 947–952.
DOI: 10.1016/j.procs.2019.04.132
Google Scholar
[12]
P. Arpaia, N. Moccaldi, R. Prevete, I. Sannino, A. Tedesco, A wearable EEG instrument for real-time frontal asymmetry monitoring in worker stress analysis, IEEE Trans. Instrum. Meas. 69(10) (2020) 8335–8343.
DOI: 10.1109/tim.2020.2988744
Google Scholar
[13]
S.S. Bangaru, C. Wang, F. Aghazadeh, Automated and continuous fatigue monitoring in construction workers using forearm EMG and IMU wearable sensors and recurrent neural network, Sensors 22(24) (2022) 9729.
DOI: 10.3390/s22249729
Google Scholar
[14]
E. Cardillo, A. Caddemi, in II Workshop Metrol. Ind. 40 IoT MetroInd40IoT, IEEE, Naples, Italy, 2019, p.254–258.
Google Scholar
[15]
D.M. Hallman, M. Birk Jørgensen, A. Holtermann, Objectively measured physical activity and 12-month trajectories of neck-shoulder pain in workers: A prospective study in DPHACTO, Scand. J. Public Health 45(3) (2017) 288–298.
DOI: 10.1177/1403494816688376
Google Scholar
[16]
Z. Sedighi Maman, M.A. Alamdar Yazdi, L.A. Cavuoto, F.M. Megahed, A data-driven approach to modeling physical fatigue in the workplace using wearable sensors, Appl. Ergon. 65 (2017) 515–529.
DOI: 10.1016/j.apergo.2017.02.001
Google Scholar
[17]
Medical work assessment in German hospitals: A study protocol of a movement sequence analysis (MAGRO-MSA), PMC.
Google Scholar
[18]
O.E. Arias, A.J. Caban-Martinez, P.E. Umukoro, C.A. Okechukwu, J.T. Dennerlein, Physical activity levels at work and outside of work among commercial construction workers, J. Occup. Environ. Med. Am. Coll. Occup. Environ. Med. 57(1) (2015) 73–78.
DOI: 10.1097/jom.0000000000000303
Google Scholar
[19]
R. Raorane, S. Wadhonkar, S. Patil, P. Borole, in 2020 Int. Conf. Converg. Digit. World - Quo Vadis ICCDW, IEEE, Mumbai, India, 2020, p.1–4.
DOI: 10.1109/iccdw45521.2020.9318643
Google Scholar
[20]
S.R. Patnaik, K. Singh, V. Udutalapally, D. Das, in IEEE 7th Int. Conf. Converg. Technol. I2CT, IEEE, Mumbai, India, 2022, p.1–6.
Google Scholar
[21]
J. Li, H. Li, W. Umer, H. Wang, X. Xing, S. Zhao, J. Hou, Identification and classification of construction equipment operators' mental fatigue using wearable eye-tracking technology, Autom. Constr. 109 (2020) 103000.
DOI: 10.1016/j.autcon.2019.103000
Google Scholar
[22]
R. Suganya, S. Gowtham, Individual health and safety monitoring of workers in deep underground mines using IoT, J. Phys. Conf. Ser. 1717(1) (2021) 012044.
DOI: 10.1088/1742-6596/1717/1/012044
Google Scholar
[23]
J. Bowen, A. Hinze, C. Griffiths, Investigating real-time monitoring of fatigue indicators of New Zealand forestry workers, Accid. Anal. Prev. 126 (2019) 122–141.
DOI: 10.1016/j.aap.2017.12.010
Google Scholar
[24]
D. Prabha, D. B, D.M. A, S. K, in 5th Int. Conf. Trends Electron. Inform. ICOEI, IEEE, Tirunelveli, India, 2021, p.453–457.
Google Scholar
[25]
G. Thomas, S. Sousan, M. Tatum, X. Liu, C. Zuidema, M. Fitzpatrick, K. Koehler, T. Peters, Low-cost, distributed environmental monitors for factory worker health, Sensors 18(5) (2018) 1411.
DOI: 10.3390/s18051411
Google Scholar
[26]
V. Villani, M. Gabbi, L. Sabattini, in IEEE Int. Conf. Syst. Man Cybern. SMC, IEEE, Prague, Czech Republic, 2022, p.2030–2036.
DOI: 10.1109/smc53654.2022.9945324
Google Scholar
[27]
W. Lee, K.-Y. Lin, P.W. Johnson, E.Y.W. Seto, Selection of wearable sensor measurements for monitoring and managing entry-level construction worker fatigue: a logistic regression approach, Eng. Constr. Archit. Manag. 29 (2022) 2905-2923.
DOI: 10.1108/ecam-02-2021-0106
Google Scholar
[28]
S. Fukuda, Y. Matsuda, Y. Arakawa, K. Yasumoto, in: Thirteen. Int. Conf. Mob. Comput. Ubiquitous Netw. ICMU, IEEE, Tokyo, Japan, 2021, pp.1-2.
Google Scholar
[29]
K. Watanabe, A. Tsutsumi, The Passive Monitoring of Depression and Anxiety Among Workers Using Digital Biomarkers Based on Their Physical Activity and Working Conditions: 2-Week Longitudinal Study, JMIR Form. Res. 6 (2022) e40339.
DOI: 10.2196/40339
Google Scholar
[30]
B.Y. Ryoo, H.C. Chung, in: Seoul, Korea, 2011.
Google Scholar
[31]
M. Fera, V. De Padova, V. Di Pasquale, F. Caputo, M. Caterino, R. Macchiaroli, Workers' Aging Management—Human Fatigue at Work: An Experimental Offices Study, Appl. Sci. 10 (2020) 7693.
DOI: 10.3390/app10217693
Google Scholar