[1]
World Health Organization, Diabetes, (n.d.).
Google Scholar
[2]
National Diabetes Statistics, National Diabetes Statistics Report | Diabetes | CDC, ‖ (n.d.).
Google Scholar
[3]
C. V. Desouza, G. B. Bolli, and V. Fonseca, Hypoglycemia, Diabetes, and Cardiovascular Events, ‖ Diabetes Care, vol. 33, no. 6, p.1389–1394, 2010.
DOI: 10.2337/dc09-2082
Google Scholar
[4]
R. A. Whitmer, Type 2 diabetes and risk of cognitive impairment and dementia, Curr. Neurol. Neurosci. Rep., vol. 7, no. 5, p.373–380, 2007.
DOI: 10.1007/s11910-007-0058-7
Google Scholar
[5]
R. R. Watson and B. B. Dokken, Glucose Intake and Utilization in Pre-Diabetes and Diabetes: Implications for Cardiovascular Disease. New York, NY, USA: Springer, 2014, p.1–414.
Google Scholar
[6]
A. V. Schwartz et al., Diabetes-Related Complications, Glycemic Control, and Falls in Older Adults, Diabetes Care, vol. 31, no. 3, p.391–396, 2008.
Google Scholar
[7]
A. Dutta, S. C. Bera, and K. Das, A non-invasive Micro Controller based estimation of blood glucose concentration by using a modified capacitive sensor at low frequency, AIP Adv., vol. 9, no. 10, p.105027, 2019.
DOI: 10.1063/1.5116059
Google Scholar
[8]
C. T. Chiang and Y. C. Huang, A Semicylindrical Capacitive Sensor with Interface Circuit Used for Flow Rate Measurement, IEEE Sens. J., vol. 6, no. 6, p.1564–1570, 2006.
DOI: 10.1109/jsen.2006.883847
Google Scholar
[9]
M. N. Manaf and K. Triyana, Analytical solutions for capacitance of a semi-cylindrical capacitive sensor, in Proc. 2016 AIP Conf., p.020002.
DOI: 10.1063/1.4958467
Google Scholar
[10]
J. Wei et al., Design, fabrication and characterization of a femto-farad capacitive sensor for pico-liter liquid monitoring, Sens. Actuators A Phys., vol. 162, no. 2, p.406–417, 2010.
DOI: 10.1016/j.sna.2010.03.021
Google Scholar
[11]
F. Reverter and Ò. Casas, Direct interface circuit for capacitive humidity sensors, Sens. Actuators A Phys., vol. 143, no. 2, p.315–322, 2008.
DOI: 10.1016/j.sna.2007.11.018
Google Scholar
[12]
D. Marioli, E. Sardini, and A. Taroni, High-accuracy measurement techniques for capacitance transducers, Meas. Sci. Technol., vol. 4, no. 3, p.337–343, 1993.
DOI: 10.1088/0957-0233/4/3/012
Google Scholar
[13]
M. T. Rahamoni et al., Towards the Portability of a Capacitive-sensor based Non-invasive Glucometer: A Simulation Approach, in Proc. 2020 IEEE Int. WIE Conf. Electr. Comput. Eng., p.94–97.
DOI: 10.1109/wiecon-ece52138.2020.9398027
Google Scholar
[14]
A. R. von Hippel and S. O. Morgan, Dielectric Materials and Applications, Cambridge, MA, USA: MIT Press, 1955.
Google Scholar
[15]
N. Ram and S. Sabach, A Globally Convergent Inertial First-Order Optimization Method for Multidimensional Scaling, J. Optim. Theory Appl., p.1–26, 2024.
DOI: 10.1007/s10957-024-02486-3
Google Scholar
[16]
Z. Peng et al., Blood glucose sensors and recent advances: A review, J. Innov. Opt. Health Sci., vol. 15, no. 2, 2022.
Google Scholar
[17]
J. Dicristina, Blood Glucose Meters, New York, NY, USA: Springer, 2010.
Google Scholar
[18]
W. Villena Gonzales, A. Mobashsher, and A. Abbosh, The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors, Sensors, vol. 19, no. 4, p.800, 2019.
DOI: 10.3390/s19040800
Google Scholar
[19]
R. A. Ilyas et al., Effect of sugar palm nano fibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch, J. Mater. Res. Technol., vol. 8, no. 5, p.4819–4830, 2019.
DOI: 10.1016/j.jmrt.2019.08.028
Google Scholar
[20]
A. A. Lykina et al., Terahertz spectroscopy of diabetic and non-diabetic human blood plasma pellets, J. Biomed. Opt., vol. 26, no. 4, 2021.
Google Scholar
[21]
B. Pedro, D. Marcôndes, and P. Bertemes-Filho, Analytical Model for Blood Glucose Detection Using Electrical Impedance Spectroscopy, Sensors, vol. 20, no. 23, p.6928, 2020.
DOI: 10.3390/s20236928
Google Scholar
[22]
D. C. Klonoff, Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future, J. Diabetes Sci. Technol., vol. 6, no. 6, p.1242–1250, 2012.
DOI: 10.1177/193229681200600602
Google Scholar
[23]
R. Vitorino et al., Diagnostic and monitoring applications using near infrared (NIR) spectroscopy in cancer and other diseases, Photodiagn. Photodyn. Ther., vol. 42, p.103633, 2023.
DOI: 10.1016/j.pdpdt.2023.103633
Google Scholar
[24]
M.W. Schellenberg and H.K. Hunt, Hand-held optoacoustic imaging: A review, Photoacoustics, vol. 11, p.14–27, 2018.
DOI: 10.1016/j.pacs.2018.07.001
Google Scholar
[25]
K. Ajito, M. Nakamura, T. Tajima, and Y. Ueno, Terahertz Spectroscopy Methods and Instrumentation, in Encyclopedia of Spectroscopy and Spectrometry, 2nd ed. Elsevier, 2017, p.432–438.
DOI: 10.1016/b978-0-12-409547-2.12092-x
Google Scholar
[26]
D. Di Filippo et al., Non-Invasive Glucose Sensing Technologies and Products: A Comprehensive Review for Researchers and Clinicians, Sensors, vol. 23, no. 22, p.9130, 2023.
DOI: 10.3390/s23229130
Google Scholar
[27]
J. Li et al., An Approach for Noninvasive Blood Glucose Monitoring Based on Bioimpedance Difference Considering Blood Volume Pulsation, IEEE Access, vol. 6, p.51119–51129, 2018.
DOI: 10.1109/access.2018.2866601
Google Scholar
[28]
T. Hua et al., A Sensitivity-Optimized Flexible Capacitive Pressure Sensor with Cylindrical Ladder Microstructural Dielectric Layers, Sensors, vol. 23, no. 9, p.4323, 2023.
DOI: 10.3390/s23094323
Google Scholar
[29]
X. Wang, H. Guo, C. Zhou, and J. Bai, High-resolution probe design for measuring the dielectric properties of human tissues, Biomed. Eng. Online, vol. 20, no. 1, 2021.
DOI: 10.1186/s12938-021-00924-1
Google Scholar
[30]
W. Frydlewicz et al., Influence of the Supply Voltage Variation on the Conducted Emission in the Frequency Range up to 150 kHz Injected into the Power Grid by CFL and LED Lamps—Case Study, Appl. Sci., vol. 14, no. 6, p.2590, 2024.
DOI: 10.3390/app14062590
Google Scholar
[31]
S. H. Lee, Y. C. Cho, and Y. B. Choy, Noninvasive Self-diagnostic Device for Tear Collection and Glucose Measurement, Sci. Rep., vol. 9, no. 1, 2019.
DOI: 10.1038/s41598-019-41066-8
Google Scholar
[32]
J. A. del Río, R. W. Zimmerman, and R. A. Dawe, Formula for the conductivity of a two-component material based on the reciprocity theorem, Solid State Commun., vol. 106, no. 4, p.183–186, 1998.
DOI: 10.1016/s0038-1098(98)00051-9
Google Scholar
[33]
D. A. Pollacco et al., Characterization of the dielectric properties of biological tissues using mixture equations and correlations to different states of hydration, Biomed. Phys. Eng. Express, vol. 5, no. 3, p.035022, 2019.
DOI: 10.1088/2057-1976/aafc1a
Google Scholar
[34]
Y. Q. L. Jin, Effective Permittivity of Dielectric Mixture Based on the Electric-Circuit Model, Electromagnetics, vol. 21, no. 4, p.341–350, 2001.
DOI: 10.1080/027263401750158216
Google Scholar
[35]
H. S. Hershkovich et al., The dielectric properties of skin and their influence on the delivery of tumor treating fields to the torso: a study combining in vivo measurements with numerical simulations, Phys. Med. Biol., vol. 64, no. 18, p.185014, 2019.
DOI: 10.1088/1361-6560/ab33c6
Google Scholar