Simulation Heatsink Orientation on Thermal Dissipation Performance, Study Case in Active Cooling M.2 NVMe

Article Preview

Abstract:

Thermal management plays a vital role in ensuring the overall performance. SSD (Solid State Drive) NVMe (Non-Volatile Memory Express) is latest generation of data storage that periodically generates unwanted heat. The present paper presents simulation result of heatsink orientation as presented in different models. The selected techniques include forced convection from air flow which will dissipate amount of heat from base area. We select M.2 NVME as study case which coupled with heatsink. The result was higher velocity resulting in lower gap temperature. Case VIII has the lowest temperature gap (3 Kelvin) while the highest is Case III (10.63 Kelvin). Then, the optimum model based on temperature and mass parameter is model B.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

214-224

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. J. Ho, Y. J. Hsieh, S. Rashidi, Y. Orooji, and W. M. Yan, "Thermalhydraulic analysis for alumina/water nanofluid inside a mini-channel heat sink with latent heat cooling ceiling-An experimental study," Int. Commun. Heat Mass Transf., vol. 112, no. January, 2020.

DOI: 10.1016/j.icheatmasstransfer.2020.104477

Google Scholar

[2] Y. Wang, B. Wang, K. Zhu, H. Li, W. He, and S. Liu, "Energy saving potential of using heat pipes for CPU cooling," Appl. Therm. Eng., vol. 143, no. January, p.630–638, 2018.

DOI: 10.1016/j.applthermaleng.2018.07.132

Google Scholar

[3] K. Sefiane and A. Koşar, "Prospects of heat transfer approaches to dissipate high heat fluxes: Opportunities and challenges," Appl. Therm. Eng., vol. 215, no. June, 2022.

DOI: 10.1016/j.applthermaleng.2022.118990

Google Scholar

[4] L. Ding, X. Cai, R. Xia, and F. Zhao, "A simplified over-temperature protection structure for smart power ICs," Analog Integr. Circuits Signal Process., vol. 111, no. 3, p.451–460, 2022, doi: 10.1007/s10470-022- 02029-8.

DOI: 10.1007/s10470-022-02029-8

Google Scholar

[5] A. Arshad, S. A. Iqrar, S. C. Costa Pereira, M. W. Shahzad, K. Nawaz, and W. Worek, "Cooling performance of an active-passive hybrid composite phase change material (HcPCM) finned heat sink: Constant operating mode," Int. J. Heat Mass Transf., vol. 207, p.123973, 2023.

DOI: 10.1016/j.ijheatmasstransfer.2023.123973

Google Scholar

[6] K. C, P. C. Mukeshkumar, and A. K. Arun, "Numerical study on the performance of Al2O3/water nanofluids as a coolant in the fin channel heat sink for an electronic device cooling," Mater. Today Proc., no. xxxx, 2023.

DOI: 10.1016/j.matpr.2023.02.337

Google Scholar

[7] Y. M. Chu et al., "CFD analysis of hybrid nanofluid-based microchannel heat sink for electronic chips cooling: Applications in nano-energy thermal devices," Case Stud. Therm. Eng., vol. 44, no. February, p.102818, 2023.

DOI: 10.1016/j.csite.2023.102818

Google Scholar

[8] A. Naufal bin Samsudin, A. Salami Tijani, S. Thottathil Abdulrahman, J. Kubenthiran, and I. Kolawole Muritala, "Thermal-hydraulic modeling of heat sink under force convection: Investigating the effect of wings on new designs," Alexandria Eng. J., vol. 65, p.709–730, 2023.

DOI: 10.1016/j.aej.2022.10.045

Google Scholar

[9] S. Siahchehrehghadikolaei, M. Gholinia, S. S. Ghadikolaei, and C. X. Lin, "A CFD modeling of CPU cooling by eco-friendly nanofluid and fin heat sink passive cooling techniques," Adv. Powder Technol., vol. 33, no. 11, p.103813, 2022.

DOI: 10.1016/j.apt.2022.103813

Google Scholar

[10] A. A. Sertkaya, M. Ozdemir, and E. Canli, "Effects of pin fin height, spacing and orientation to natural convection heat transfer for inline pin fin and plate heat sinks by experimental investigation," Int. J. Heat Mass Transf., vol. 177, p.121527, 2021.

DOI: 10.1016/j.ijheatmasstransfer.2021.121527

Google Scholar

[11] R. A. Nicholls, M. A. Moghimi, and A. L. Griffiths, "Impact of fin type and orientation on performance of phase change material-based double pipe thermal energy storage," J. Energy Storage, vol. 50, no. March, p.104671, 2022.

DOI: 10.1016/j.est.2022.104671

Google Scholar

[12] B. İ. Toprak, S. Baghaei Oskouei, Ö. Bayer, and İ. Solmaz, "Experimental and numerical investigation of a novel pipe-network mini channel heatsink," Int. Commun. Heat Mass Transf., vol. 136, 2022.

DOI: 10.1016/j.icheatmasstransfer.2022.106212

Google Scholar

[13] S. Thiangchanta, R. Khiewwijit, S. Chainetr, and Y. Mona, "Energy reduction for commercial freezer by force convection cooling of heatsink," Energy Reports, vol. 8, p.394–399, 2022.

DOI: 10.1016/j.egyr.2022.05.169

Google Scholar

[14] A. Chamkha, A. Veismoradi, M. Ghalambaz, and P. Talebizadehsardari, "Phase change heat transfer in an L-shape heatsink occupied with paraffin-copper metal foam," Appl. Therm. Eng., vol. 177, no. April, p.115493, 2020.

DOI: 10.1016/j.applthermaleng.2020.115493

Google Scholar

[15] D. X. Zhang et al., "Design and the transient thermal control performance analysis of a novel PCM-based active-passive cooling heat sink," Appl. Therm. Eng., vol. 220, no. September 2022, p.119525, 2023.

DOI: 10.1016/j.applthermaleng.2022.119525

Google Scholar

[16] F. Alawwa et al., "Thermohydraulic performance comparison of 3D printed circuit heatsinks with conventional integral fin heatsinks," Appl. Therm. Eng., vol. 226, no. October 2022, p.120356, 2023.

DOI: 10.1016/j.applthermaleng.2023.120356

Google Scholar

[17] S. Sulung, A. K. Mainil, and A. Suandi, "Heatsink 3D By Cfd Analysis of Cooling System in a Pc Desktop," Rekayasa Mek. Mech. Eng. Sci. Journal, Pure Inter Discip., vol. 3, no. 2, p.20–25, 2019, [Online]. Available: https://ejournal.unib.ac.id/index.php/rekayasamekanika/article/view/98 56

Google Scholar

[18] J. G. Hernandez-Perez, J. G. Carrillo, A. Bassam, M. Flota-Banuelos, and L. D. Patino-Lopez, "A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation," Renew. Energy, vol. 147, p.1209–1220, 2020.

DOI: 10.1016/j.renene.2019.09.088

Google Scholar

[19] W. Zhao, Z. Ying, X. Song, and R. Xu, "Cost-minimization method for heatsink of multi-parallel power devices considering thermal safety constraints," Energy Reports, vol. 7, p.306–314, 2021.

DOI: 10.1016/j.egyr.2021.10.028

Google Scholar

[20] G. N. Shilo, E. V. Ogrenich, and N. P. Gaponenko, "Design of finned heatsinks having minimum mass," Mod. Probl. Radio Eng. Telecommun. Comput. Sci. - Proc. 10th Int. Conf. TCSET'2010, no. 5, p.301–302, 2010.

Google Scholar