Solar Hybrid Grain Dryer Machine

Article Preview

Abstract:

The grain drying process in Indonesia is usually done by conventional drying or by using a drying machine with a gas energy source. The conventional grain drying process is very dependent on weather conditions and is relatively long, while using a machine with a gas energy source the drying process only takes 5 hours. However, the energy used by the machine includes non-renewable energy. This research aims to design a grain dryer that combines two energy sources, namely solar heat as the main and renewable energy source and uses an electric heating heat energy source when in conditions of low sunlight intensity or at night with a maximum capacity of 35kg of wet grain. To achieve these goals, the methods used in this research are sequential hysteresis and the greenhouse effect. From the test results that have been carried out, the machine is able to dry wet grain with a moisture content of 26% to 14% during the day by using solar thermal energy takes 3 hours 45 minutes with an average electric power consumption of 0,0506 KWh. While drying grain using electric heaters at night takes 4 hours 15 minutes with an average electric power consumption of 1,0704 KWh.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

175-184

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Evaluasi Kadar Air Gabah‬. (2021). Google.co.id. https://scholar.google.co.id/citations?view_op=view_citation&hl=id&user=umTQVUcAAAAJ&citation_for_view=umTQVUcAAAAJ:IjCSPb-OGe4C‬‬‬‬‬‬‬‬

Google Scholar

[2] Riska Nur Wakidah, Setiawan, B., & Agus Pracoyo. (2020, November 23). IMPLEMENTASI KONTROL PID PADA SUHU INKUBATOR PENETAS TELUR MENGGUNAKAN SISTEM TENAGAHYBRID. ResearchGate; Politeknik Negeri Malang. https://www.researchgate.net/publication/350696272_IMPLEMENTASI_KONTROL_PID_PADA_SUHU_INKUBATOR_PENETAS_TELUR_MENGGUNAKAN_SISTEM_TENAGAHYBRID

DOI: 10.33795/elkolind.v3i1.64

Google Scholar

[3] Akmal, F., Mustaqimah Mustaqimah, & Diswandi Nurba. (2021). Uji Performansi Alat Green House Effect (GHE) Vent Dryer Dengan Penambahan Batu Serpihan Sebagai Media Penyimpan Panas. Jurnal Ilmiah Mahasiswa Pertanian, 6(4), 530–537. https://jim.usk.ac.id/JFP/ article/view/18308/8672

DOI: 10.17969/jimfp.v6i4.18308

Google Scholar

[4] Satya Andika Putra, & Novrinaldi Novrinaldi. (2019). Analisis Energi Panas Pada Alat Pengeringan Gabah Tipe Swirling Fluidized Bed. Teknik, 40(2), 84–84

DOI: 10.14710/teknik.v39i3.22765

Google Scholar

[5] Akhyar Muchtar, Muhammad, U., Nunik Lestari, & Usman, U. (2020, June 22). Purwarupa dan Kinerja Pengering Gabah Hybrid Solar Heating dan Photovoltaic Heater dengan Sistem... ResearchGate; Universitas Negeri Semarang. https://www.researchgate.net/publication/342436434_Purwarupa_dan_Kinerja_Pengering_Gabah_Hybrid_Solar_Heating_dan_Photovoltaic_Heater_dengan_Sistem_Monitoring_Suhu

DOI: 10.15294/jte.v12i1.24028

Google Scholar

[6] Verdy Ariyanto Koehuana, Kristianus Yosafat Goab, & Jafri, M. (2022). Pengujian Rumah Pengering Daun Kelor dengan Efek Rumah Kaca (Solar Dryer) Melalui Variasi Kecepatan Udara. JMPM (Jurnal Material Dan Proses Manufaktur), 5(2), 68–81. https://doi.org/10.18196/ jmpm.v5i2.13899

DOI: 10.18196/jmpm.v5i2.13899

Google Scholar

[7] Muhamad Fadhlan Suhelmi, Ratna Dewi Anjani, & Najmudin Fauji. (2022). Perhitungan Efisiensi Pengeringan pada Mesin Pengering Gabah Tipe Flat Bed Dryer di CV. XYZ. Jurnal Rekayasa Mesin, 17(1), 15–15

DOI: 10.32497/jrm.v17i1.2848

Google Scholar