[1]
M. Debbarma, K. Sudhakar, and P. Baredar, "Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review," 2017, Elsevier Ltd.
DOI: 10.1016/j.rser.2017.02.035
Google Scholar
[2]
A. K. Shukla, K. Sudhakar, and P. Baredar, "A comprehensive review on design of building integrated photovoltaic system," Sep. 15, 2016, Elsevier Ltd.
DOI: 10.1016/j.enbuild.2016.06.077
Google Scholar
[3]
Y. He, D.J.C. Hii, and N.H. Wong, "Solar photovoltaics deployment impact on urban temperature: Review and assessment recommendations," Oct. 01, 2024, Elsevier Ltd.
DOI: 10.1016/j.buildenv.2024.111920
Google Scholar
[4]
M. Manni et al., "Ten questions concerning planning and design strategies for solar neighborhoods," Build Environ, vol. 246, Dec. 2023.
DOI: 10.1016/j.buildenv.2023.110946
Google Scholar
[5]
E. Fakhraian, M. Alier, F.V. Dalmau, A. Nameni, and J.C. Guerrero, "The urban rooftop photovoltaic potential determination," Sustainability (Switzerland), vol. 13, no. 13, Jul. 2021.
DOI: 10.3390/su13137447
Google Scholar
[6]
M.U. Hasan, S. Saha, and M.E. Haque, "Techno-Economic Analysis and Performance Evaluation of Rooftop Solar PV Systems Using Actual Data in Australian Context," in 2020 IEEE Industry Applications Society Annual Meeting, IAS 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020.
DOI: 10.1109/IAS44978.2020.9334784
Google Scholar
[7]
BMKG, "https://dataonline.bmkg.go.id/."
Google Scholar
[8]
User Manual, "User Manual 3.5KW/5.5KW Plus Inverter/MPPT SCC/AC Charger. Available Online: https://ijrorwxhnkrolq5p.leadongcdn.com/Victor+NM+II+PLUS+User+Manual-NEXT+Nomal-aidlqBplKqrllSRrjljmiqkio.pdf?dp=GvUApKfKKUAU."
Google Scholar
[9]
D. Strąk and M. Piasecka, "Conception of minichannel cooling for a PVT heat exchanger," EPJ Web Conf, vol. 264, p.01045, 2022.
DOI: 10.1051/epjconf/202226401045
Google Scholar
[10]
I.M. Batic, M.C. Batic, and Ž. R. Djurišic, "Impact of Air Temperature and Wind Speed On the Efficiency of a Photovoltaic Power Plant an Experimental Analysis," Thermal Science, vol. 27, no. 1, p.299–310, 2023.
DOI: 10.2298/TSCI220610160B
Google Scholar
[11]
M.M. Darian and A.M. Ghorreshi, "Comparison of the effect of temperature parameter on the functionality of tracking and fixed photovoltaic systems: A case study in Tehran, Iran," Scientia Iranica, vol. 28, no. 3 B, p.1298–1305, May 2021.
DOI: 10.24200/sci.2020.55173.4102
Google Scholar
[12]
T. Nehari, M. Benlakam, and D. Nehari, "Effect of the fins length for the passive cooling of the photovoltaic panels," Periodica Polytechnica Mechanical Engineering, vol. 60, no. 2, p.89–95, 2016.
DOI: 10.3311/PPme.8571
Google Scholar
[13]
S. Lindig, J. Ascencio-Vasquez, J. Leloux, D. Moser, and A. Reinders, "Performance Analysis and Degradation of a Large Fleet of PV Systems," IEEE J Photovolt, vol. 11, no. 5, p.1312–1318, Sep. 2021.
DOI: 10.1109/JPHOTOV.2021.3093049
Google Scholar
[14]
M. Dhimish, "Performance Ratio and Degradation Rate Analysis of 10-Year Field Exposed Residential Photovoltaic Installations in the UK and Ireland," Clean Technologies, vol. 2, no. 2, p.170–183, Jun. 2020.
DOI: 10.3390/cleantechnol2020012
Google Scholar
[15]
A.F. Amiri, A. Chouder, H. Oudira, S. Silvestre, and S. Kichou, "Improving Photovoltaic Power Prediction: Insights through Computational Modeling and Feature Selection," Energies, vol. 17, no. 13, Jul. 2024.
DOI: 10.3390/en17133078
Google Scholar
[16]
D. J. Sailor, J. Anand, and R. R. King, "Photovoltaics in the built environment: A critical review," Energy Build, vol. 253, Dec. 2021.
DOI: 10.1016/j.enbuild.2021.111479
Google Scholar
[17]
M. N. Tursunov et al., "Capacity Utilization Factor (CUF) of the 70kW on-grid solar station in the dry climate of Termez," in E3S Web of Conferences, EDP Sciences, Jul. 2023.
DOI: 10.1051/e3sconf/202340102059
Google Scholar
[18]
W. Wongwan, N. Pleerux, N. Thanomsat, and S. Moukomla, "Technical and Economic Potential of Solar Energy on Rooftops: A Case Study at Lampang Rajabhat University, Thailand," International Journal of Geoinformatics, vol. 20, no. 2, p.82–94, Feb. 2024.
DOI: 10.52939/ijg.v20i2.3069
Google Scholar
[19]
J. D. Rhodes, C. R. Upshaw, W. J. Cole, C. L. Holcomb, and M. E. Webber, "A multi-objective assessment of the effect of solar PV array orientation and tilt on energy production and system economics," Solar Energy, vol. 108, p.28–40, 2014.
DOI: 10.1016/j.solener.2014.06.032
Google Scholar
[20]
G. Bonazzi and M. Iotti, "Evaluation of investment in renovation to increase the quality of buildings: A Specific Discounted Cash Flow (DCF) Approach of Appraisal," Sustainability (Switzerland), vol. 8, no. 3, Mar. 2016.
DOI: 10.3390/su8030268
Google Scholar
[21]
T. Shou, "A Literature Review on the Net Present Value (NPV) Valuation Method," 2022.
Google Scholar
[22]
X. Chen, "Theoretical Analysis of Net Present Value," 2022.
Google Scholar
[23]
Kementerian Energi dan Sumber Daya Mineral, "Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 7 Tahun 2024 Tentang Tarif Tenaga Listrik yang Disediakan ioleh PT Perusahaan Listrik Negara (Persero)," 2024, Jakarta.
DOI: 10.32520/das-sollen.v5i1.1647
Google Scholar
[24]
PT PLN Persero Indonesia, "Tarif Adjustment," https://web.pln.co.id/pelanggan/tarif-tenaga-listrik/tariff-adjustment.
Google Scholar
[25]
M. E. Flowers, M. K. Smith, A. W. Parsekian, D. S. Boyuk, J. K. McGrath, and L. Yates, "Climate impacts on the cost of solar energy," Energy Policy, vol. 94, p.264–273, Jul. 2016.
DOI: 10.1016/j.enpol.2016.04.018
Google Scholar
[26]
C. Aditya, S. Nungsizu, and H. Nugroho, "Penerapan Metode Genetic Alghorithm untuk Meminimalkan Biaya Perawatan Sistem Pembangkit Energi Hibrid Solar Panel dan Turbin Angin," Energi & Kelistrikan, vol. 13, no. 2, p.172–177, Dec. 2021.
DOI: 10.33322/energi.v13i2.1329
Google Scholar
[27]
Kementerian Energi dan Sumber Daya Mineral Republik Indonesia, "Siaran Pers Kementerian Energi dan Sumber Daya Mineral Republik Indonesia Nomor 28.Pers/04/SJI/2024 Tanggal 15 Januari 2024," https://www.esdm.go.id/id/media-center/arsip-berita/konsumsi-listrik-masyarakat-meningkat-tahun-2023-capai-1285-kwh-kapita.
DOI: 10.21787/mp.3.2.2019.109-118
Google Scholar
[28]
F. Alonso-Marroquin and G. Qadir, "Synergy between Photovoltaic Panels and Green Roofs," Energies (Basel), vol. 16, no. 13, Jul. 2023.
DOI: 10.3390/en16135184
Google Scholar
[29]
Y. Zheng and Q. Weng, "Modeling the effect of green roof systems and photovoltaic panels for building energy savings to mitigate climate change," Remote Sens (Basel), vol. 12, no. 15, Aug. 2020.
DOI: 10.3390/RS12152402
Google Scholar
[30]
G. Mutani and V. Todeschi, "Low-Carbon Strategies for Resilient Cities: A Place-Based Evaluation of Solar Technologies and Green Roofs Potential in Urban Contexts," TECNICA ITALIANA-Italian Journal of Engineering Science, vol. 64, no. 2–4, p.193–201, Jun. 2020.
DOI: 10.18280/ti-ijes.642-410
Google Scholar
[31]
K. E. Enongene, F. H. Abanda, I. J. J. Otene, S. I. Obi, and C. Okafor, "The potential of solar photovoltaic systems for residential homes in Lagos city of Nigeria," J Environ Manage, vol. 244, p.247–256, Aug. 2019.
DOI: 10.1016/j.jenvman.2019.04.039
Google Scholar
[32]
P. Kozlovas, S. Gudzius, J. Ciurlionis, A. Jonaitis, I. Konstantinaviciute, and V. Bobinaite, "Assessment of Technical and Economic Potential of Urban Rooftop Solar Photovoltaic Systems in Lithuania," Energies (Basel), vol. 16, no. 14, Jul. 2023.
DOI: 10.3390/en16145410
Google Scholar
[33]
F. Mansouri Kouhestani, J. Byrne, D. Johnson, L. Spencer, P. Hazendonk, and B. Brown, "Evaluating solar energy technical and economic potential on rooftops in an urban setting: the city of Lethbridge, Canada," International Journal of Energy and Environmental Engineering, vol. 10, no. 1, p.13–32, Mar. 2019.
DOI: 10.1007/s40095-018-0289-1
Google Scholar
[34]
O. Turan, A. Durusu, and R. Yumurtaci, "Driving Urban Energy Sustainability: A Techno-Economic Perspective on Nanogrid Solutions," Energies (Basel), vol. 16, no. 24, Dec. 2023.
DOI: 10.3390/en16248084
Google Scholar
[35]
Y. Zhang, T. Ma, P. Elia Campana, Y. Yamaguchi, and Y. Dai, "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Appl Energy, vol. 269, Jul. 2020.
DOI: 10.1016/j.apenergy.2020.115106
Google Scholar
[36]
A. A. Kebede, M. Berecibar, T. Coosemans, M. Messagie, T. Jemal, H. A. Behabtu, and J. V. Mierlo, "A techno-economic optimization and performance assessment of a 10 kWP photovoltaic grid-connected system," Sustainability (Switzerland), vol. 12, no. 18, Sep. 2020
DOI: 10.3390/su12187648
Google Scholar
[37]
T. Li, W. A. Dunlap-Shohl, and D. B. Mitzi, "Bifacial perovskite solar cells via a rapid lamination process," ACS Appl Energy Mater, vol. 3, no. 10, p.9493–9497, Oct. 2020.
DOI: 10.1021/acsaem.0c00756
Google Scholar
[38]
Z. Song, C. Li, L. Chen, and Y. Yan, "Perovskite Solar Cells Go Bifacial—Mutual Benefits for Efficiency and Durability," Advanced Materials: Volume 34, Issue 4 January 27, 2022, vol. 34, no. 4, Jan. 2022.
DOI: 10.1002/adma.202106805
Google Scholar
[39]
H. Wang, H. A. Dewi, T. M. Koh, A. Bruno, S. Mhaisalkar, and N. Mathews, "Bifacial, Color-Tunable Semitransparent Perovskite Solar Cells for Building-Integrated Photovoltaics," ACS Appl Mater Interfaces, vol. 12, no. 1, p.484–493, Jan. 2020.
DOI: 10.1021/acsami.9b15488
Google Scholar
[40]
A. P. Muthukrishnan, J. Lee, J. Y. Kim, A. Karim, J. Kim, J. Yoo, Y. S. Do, and S. Jo, "Hot-Pressing Transfer of Diffraction-Grating Perovskite for Efficient Bifacial Perovskite Solar Cells," Adv Mater Interfaces, vol. 11, no. 4, Feb. 2024.
DOI: 10.1002/admi.202300808
Google Scholar
[41]
M. De Bastiani, A.J. Mirabelli , Y. Hou , F. Gota, E. Aydin , T.G. Allen, J. Troughton, A.S. Subbiah , F. H. Isikgor, J. Liu, L. Xu , B. Chen, E. V. Kerschaver, D. Baran , B. Fraboni, M.F. Salvador, U.W. Paetzold, E.H. Sargent , and S. De Wolf, "Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering," Nat Energy, vol. 6, no. 2, p.167–175, Feb. 2021.
DOI: 10.1038/s41560-020-00756-8
Google Scholar
[42]
R. Asadpour, R. V. K. Chavali, M. Ryyan Khan, and M. A. Alam, "Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT∗ ∼33%) solar cell," Appl Phys Lett, vol. 106, no. 24, Jun. 2015.
DOI: 10.1063/1.4922375
Google Scholar
[43]
O. Dupre, A. Tuomiranta, Q. Jeangros, M. Boccard, P. J. Alet, and C. Ballif, "Design Rules to Fully Benefit from Bifaciality in Two-Terminal Perovskite/Silicon Tandem Solar Cells," IEEE J Photovolt, vol. 10, no. 3, p.714–721, May 2020.
DOI: 10.1109/JPHOTOV.2020.2973453
Google Scholar
[44]
Y. Li, J. Duan, Y. Zhao, and Q. Tang, "All-inorganic bifacial CsPbBr3 perovskite solar cells with a 98.5%-bifacial factor," Chemical Communications, vol. 54, no. 59, p.8237–8240, 2018.
DOI: 10.1039/c8cc04271c
Google Scholar
[45]
S. Z. Pang, X. Li, H. Dong, D. Chen, W. Zhu, J. Chang, Z. Lin, H. Xi, J. Zhang, C. Zhang, and Y. Hao, "Efficient Bifacial Semitransparent Perovskite Solar Cells Using Ag/V2O5 as Transparent Anodes," ACS Appl Mater Interfaces, vol. 10, no. 15, p.12731–12739, Apr. 2018.
DOI: 10.1021/acsami.8b01611
Google Scholar
[46]
P. Tillmann, K. Jäger, A. Karsenti, L. Kreinin, and C. Becker, "Model-Chain Validation for Estimating the Energy Yield of Bifacial Perovskite/Silicon Tandem Solar Cells," Solar RRL, vol. 6, no. 9, Sep. 2022.
DOI: 10.1002/solr.202200079
Google Scholar