Performance and Potential of Solar Power Plants on Canopy Roofs: Evaluation and Implications

Article Preview

Abstract:

Integrating solar power systems on canopy rooftops has emerged as a viable renewable energy solution, reducing reliance on conventional electricity sources and lowering operational expenses. This study evaluates the performance and potential of solar power systems installed on canopy roofs, emphasizing their technical, economic, and environmental impacts. The system demonstrates a strong energy conversion efficiency, with a Performance Ratio (PR) of 72.64% and a Capacity Utilization Factor (CUF) of 15.19%, indicating effective utilization of installed capacity. Although the system contributes significantly to reducing electricity costs, decreasing electricity bills by 37.5%, the payback period of 15 years and a negative Net Present Value (NPV) of-19.93 million rupiahs suggest that investment may not be financially viable without an increase in National Electricity Company (PLN) electricity tariffs. Environmentally, the system reduced CO₂ emissions by approximately 1.45 metric tons over seven months, equivalent to removing 0.32 cars from the road and comparable to the emission reduction achieved by a small wind turbine. Nevertheless, challenges such as fluctuating weather conditions impacting energy generation and high initial costs remain, highlighting the need for advanced technologies and policy support to enhance adoption.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

162-174

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Debbarma, K. Sudhakar, and P. Baredar, "Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review," 2017, Elsevier Ltd.

DOI: 10.1016/j.rser.2017.02.035

Google Scholar

[2] A. K. Shukla, K. Sudhakar, and P. Baredar, "A comprehensive review on design of building integrated photovoltaic system," Sep. 15, 2016, Elsevier Ltd.

DOI: 10.1016/j.enbuild.2016.06.077

Google Scholar

[3] Y. He, D.J.C. Hii, and N.H. Wong, "Solar photovoltaics deployment impact on urban temperature: Review and assessment recommendations," Oct. 01, 2024, Elsevier Ltd.

DOI: 10.1016/j.buildenv.2024.111920

Google Scholar

[4] M. Manni et al., "Ten questions concerning planning and design strategies for solar neighborhoods," Build Environ, vol. 246, Dec. 2023.

DOI: 10.1016/j.buildenv.2023.110946

Google Scholar

[5] E. Fakhraian, M. Alier, F.V. Dalmau, A. Nameni, and J.C. Guerrero, "The urban rooftop photovoltaic potential determination," Sustainability (Switzerland), vol. 13, no. 13, Jul. 2021.

DOI: 10.3390/su13137447

Google Scholar

[6] M.U. Hasan, S. Saha, and M.E. Haque, "Techno-Economic Analysis and Performance Evaluation of Rooftop Solar PV Systems Using Actual Data in Australian Context," in 2020 IEEE Industry Applications Society Annual Meeting, IAS 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020.

DOI: 10.1109/IAS44978.2020.9334784

Google Scholar

[7] BMKG, "https://dataonline.bmkg.go.id/."

Google Scholar

[8] User Manual, "User Manual 3.5KW/5.5KW Plus Inverter/MPPT SCC/AC Charger. Available Online: https://ijrorwxhnkrolq5p.leadongcdn.com/Victor+NM+II+PLUS+User+Manual-NEXT+Nomal-aidlqBplKqrllSRrjljmiqkio.pdf?dp=GvUApKfKKUAU."

Google Scholar

[9] D. Strąk and M. Piasecka, "Conception of minichannel cooling for a PVT heat exchanger," EPJ Web Conf, vol. 264, p.01045, 2022.

DOI: 10.1051/epjconf/202226401045

Google Scholar

[10] I.M. Batic, M.C. Batic, and Ž. R. Djurišic, "Impact of Air Temperature and Wind Speed On the Efficiency of a Photovoltaic Power Plant an Experimental Analysis," Thermal Science, vol. 27, no. 1, p.299–310, 2023.

DOI: 10.2298/TSCI220610160B

Google Scholar

[11] M.M. Darian and A.M. Ghorreshi, "Comparison of the effect of temperature parameter on the functionality of tracking and fixed photovoltaic systems: A case study in Tehran, Iran," Scientia Iranica, vol. 28, no. 3 B, p.1298–1305, May 2021.

DOI: 10.24200/sci.2020.55173.4102

Google Scholar

[12] T. Nehari, M. Benlakam, and D. Nehari, "Effect of the fins length for the passive cooling of the photovoltaic panels," Periodica Polytechnica Mechanical Engineering, vol. 60, no. 2, p.89–95, 2016.

DOI: 10.3311/PPme.8571

Google Scholar

[13] S. Lindig, J. Ascencio-Vasquez, J. Leloux, D. Moser, and A. Reinders, "Performance Analysis and Degradation of a Large Fleet of PV Systems," IEEE J Photovolt, vol. 11, no. 5, p.1312–1318, Sep. 2021.

DOI: 10.1109/JPHOTOV.2021.3093049

Google Scholar

[14] M. Dhimish, "Performance Ratio and Degradation Rate Analysis of 10-Year Field Exposed Residential Photovoltaic Installations in the UK and Ireland," Clean Technologies, vol. 2, no. 2, p.170–183, Jun. 2020.

DOI: 10.3390/cleantechnol2020012

Google Scholar

[15] A.F. Amiri, A. Chouder, H. Oudira, S. Silvestre, and S. Kichou, "Improving Photovoltaic Power Prediction: Insights through Computational Modeling and Feature Selection," Energies, vol. 17, no. 13, Jul. 2024.

DOI: 10.3390/en17133078

Google Scholar

[16] D. J. Sailor, J. Anand, and R. R. King, "Photovoltaics in the built environment: A critical review," Energy Build, vol. 253, Dec. 2021.

DOI: 10.1016/j.enbuild.2021.111479

Google Scholar

[17] M. N. Tursunov et al., "Capacity Utilization Factor (CUF) of the 70kW on-grid solar station in the dry climate of Termez," in E3S Web of Conferences, EDP Sciences, Jul. 2023.

DOI: 10.1051/e3sconf/202340102059

Google Scholar

[18] W. Wongwan, N. Pleerux, N. Thanomsat, and S. Moukomla, "Technical and Economic Potential of Solar Energy on Rooftops: A Case Study at Lampang Rajabhat University, Thailand," International Journal of Geoinformatics, vol. 20, no. 2, p.82–94, Feb. 2024.

DOI: 10.52939/ijg.v20i2.3069

Google Scholar

[19] J. D. Rhodes, C. R. Upshaw, W. J. Cole, C. L. Holcomb, and M. E. Webber, "A multi-objective assessment of the effect of solar PV array orientation and tilt on energy production and system economics," Solar Energy, vol. 108, p.28–40, 2014.

DOI: 10.1016/j.solener.2014.06.032

Google Scholar

[20] G. Bonazzi and M. Iotti, "Evaluation of investment in renovation to increase the quality of buildings: A Specific Discounted Cash Flow (DCF) Approach of Appraisal," Sustainability (Switzerland), vol. 8, no. 3, Mar. 2016.

DOI: 10.3390/su8030268

Google Scholar

[21] T. Shou, "A Literature Review on the Net Present Value (NPV) Valuation Method," 2022.

Google Scholar

[22] X. Chen, "Theoretical Analysis of Net Present Value," 2022.

Google Scholar

[23] Kementerian Energi dan Sumber Daya Mineral, "Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 7 Tahun 2024 Tentang Tarif Tenaga Listrik yang Disediakan ioleh PT Perusahaan Listrik Negara (Persero)," 2024, Jakarta.

DOI: 10.32520/das-sollen.v5i1.1647

Google Scholar

[24] PT PLN Persero Indonesia, "Tarif Adjustment," https://web.pln.co.id/pelanggan/tarif-tenaga-listrik/tariff-adjustment.

Google Scholar

[25] M. E. Flowers, M. K. Smith, A. W. Parsekian, D. S. Boyuk, J. K. McGrath, and L. Yates, "Climate impacts on the cost of solar energy," Energy Policy, vol. 94, p.264–273, Jul. 2016.

DOI: 10.1016/j.enpol.2016.04.018

Google Scholar

[26] C. Aditya, S. Nungsizu, and H. Nugroho, "Penerapan Metode Genetic Alghorithm untuk Meminimalkan Biaya Perawatan Sistem Pembangkit Energi Hibrid Solar Panel dan Turbin Angin," Energi & Kelistrikan, vol. 13, no. 2, p.172–177, Dec. 2021.

DOI: 10.33322/energi.v13i2.1329

Google Scholar

[27] Kementerian Energi dan Sumber Daya Mineral Republik Indonesia, "Siaran Pers Kementerian Energi dan Sumber Daya Mineral Republik Indonesia Nomor 28.Pers/04/SJI/2024 Tanggal 15 Januari 2024," https://www.esdm.go.id/id/media-center/arsip-berita/konsumsi-listrik-masyarakat-meningkat-tahun-2023-capai-1285-kwh-kapita.

DOI: 10.21787/mp.3.2.2019.109-118

Google Scholar

[28] F. Alonso-Marroquin and G. Qadir, "Synergy between Photovoltaic Panels and Green Roofs," Energies (Basel), vol. 16, no. 13, Jul. 2023.

DOI: 10.3390/en16135184

Google Scholar

[29] Y. Zheng and Q. Weng, "Modeling the effect of green roof systems and photovoltaic panels for building energy savings to mitigate climate change," Remote Sens (Basel), vol. 12, no. 15, Aug. 2020.

DOI: 10.3390/RS12152402

Google Scholar

[30] G. Mutani and V. Todeschi, "Low-Carbon Strategies for Resilient Cities: A Place-Based Evaluation of Solar Technologies and Green Roofs Potential in Urban Contexts," TECNICA ITALIANA-Italian Journal of Engineering Science, vol. 64, no. 2–4, p.193–201, Jun. 2020.

DOI: 10.18280/ti-ijes.642-410

Google Scholar

[31] K. E. Enongene, F. H. Abanda, I. J. J. Otene, S. I. Obi, and C. Okafor, "The potential of solar photovoltaic systems for residential homes in Lagos city of Nigeria," J Environ Manage, vol. 244, p.247–256, Aug. 2019.

DOI: 10.1016/j.jenvman.2019.04.039

Google Scholar

[32] P. Kozlovas, S. Gudzius, J. Ciurlionis, A. Jonaitis, I. Konstantinaviciute, and V. Bobinaite, "Assessment of Technical and Economic Potential of Urban Rooftop Solar Photovoltaic Systems in Lithuania," Energies (Basel), vol. 16, no. 14, Jul. 2023.

DOI: 10.3390/en16145410

Google Scholar

[33] F. Mansouri Kouhestani, J. Byrne, D. Johnson, L. Spencer, P. Hazendonk, and B. Brown, "Evaluating solar energy technical and economic potential on rooftops in an urban setting: the city of Lethbridge, Canada," International Journal of Energy and Environmental Engineering, vol. 10, no. 1, p.13–32, Mar. 2019.

DOI: 10.1007/s40095-018-0289-1

Google Scholar

[34] O. Turan, A. Durusu, and R. Yumurtaci, "Driving Urban Energy Sustainability: A Techno-Economic Perspective on Nanogrid Solutions," Energies (Basel), vol. 16, no. 24, Dec. 2023.

DOI: 10.3390/en16248084

Google Scholar

[35] Y. Zhang, T. Ma, P. Elia Campana, Y. Yamaguchi, and Y. Dai, "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Appl Energy, vol. 269, Jul. 2020.

DOI: 10.1016/j.apenergy.2020.115106

Google Scholar

[36] A. A. Kebede, M. Berecibar, T. Coosemans, M. Messagie, T. Jemal, H. A. Behabtu, and J. V. Mierlo, "A techno-economic optimization and performance assessment of a 10 kWP photovoltaic grid-connected system," Sustainability (Switzerland), vol. 12, no. 18, Sep. 2020

DOI: 10.3390/su12187648

Google Scholar

[37] T. Li, W. A. Dunlap-Shohl, and D. B. Mitzi, "Bifacial perovskite solar cells via a rapid lamination process," ACS Appl Energy Mater, vol. 3, no. 10, p.9493–9497, Oct. 2020.

DOI: 10.1021/acsaem.0c00756

Google Scholar

[38] Z. Song, C. Li, L. Chen, and Y. Yan, "Perovskite Solar Cells Go Bifacial—Mutual Benefits for Efficiency and Durability," Advanced Materials: Volume 34, Issue 4 January 27, 2022, vol. 34, no. 4, Jan. 2022.

DOI: 10.1002/adma.202106805

Google Scholar

[39] H. Wang, H. A. Dewi, T. M. Koh, A. Bruno, S. Mhaisalkar, and N. Mathews, "Bifacial, Color-Tunable Semitransparent Perovskite Solar Cells for Building-Integrated Photovoltaics," ACS Appl Mater Interfaces, vol. 12, no. 1, p.484–493, Jan. 2020.

DOI: 10.1021/acsami.9b15488

Google Scholar

[40] A. P. Muthukrishnan, J. Lee, J. Y. Kim, A. Karim, J. Kim, J. Yoo, Y. S. Do, and S. Jo, "Hot-Pressing Transfer of Diffraction-Grating Perovskite for Efficient Bifacial Perovskite Solar Cells," Adv Mater Interfaces, vol. 11, no. 4, Feb. 2024.

DOI: 10.1002/admi.202300808

Google Scholar

[41] M. De Bastiani, A.J. Mirabelli , Y. Hou , F. Gota, E. Aydin , T.G. Allen, J. Troughton, A.S. Subbiah , F. H. Isikgor, J. Liu, L. Xu , B. Chen, E. V. Kerschaver, D. Baran , B. Fraboni, M.F. Salvador, U.W. Paetzold, E.H. Sargent , and S. De Wolf, "Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering," Nat Energy, vol. 6, no. 2, p.167–175, Feb. 2021.

DOI: 10.1038/s41560-020-00756-8

Google Scholar

[42] R. Asadpour, R. V. K. Chavali, M. Ryyan Khan, and M. A. Alam, "Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT∗ ∼33%) solar cell," Appl Phys Lett, vol. 106, no. 24, Jun. 2015.

DOI: 10.1063/1.4922375

Google Scholar

[43] O. Dupre, A. Tuomiranta, Q. Jeangros, M. Boccard, P. J. Alet, and C. Ballif, "Design Rules to Fully Benefit from Bifaciality in Two-Terminal Perovskite/Silicon Tandem Solar Cells," IEEE J Photovolt, vol. 10, no. 3, p.714–721, May 2020.

DOI: 10.1109/JPHOTOV.2020.2973453

Google Scholar

[44] Y. Li, J. Duan, Y. Zhao, and Q. Tang, "All-inorganic bifacial CsPbBr3 perovskite solar cells with a 98.5%-bifacial factor," Chemical Communications, vol. 54, no. 59, p.8237–8240, 2018.

DOI: 10.1039/c8cc04271c

Google Scholar

[45] S. Z. Pang, X. Li, H. Dong, D. Chen, W. Zhu, J. Chang, Z. Lin, H. Xi, J. Zhang, C. Zhang, and Y. Hao, "Efficient Bifacial Semitransparent Perovskite Solar Cells Using Ag/V2O5 as Transparent Anodes," ACS Appl Mater Interfaces, vol. 10, no. 15, p.12731–12739, Apr. 2018.

DOI: 10.1021/acsami.8b01611

Google Scholar

[46] P. Tillmann, K. Jäger, A. Karsenti, L. Kreinin, and C. Becker, "Model-Chain Validation for Estimating the Energy Yield of Bifacial Perovskite/Silicon Tandem Solar Cells," Solar RRL, vol. 6, no. 9, Sep. 2022.

DOI: 10.1002/solr.202200079

Google Scholar