Wind Energy Prospect Assessment by Weibull Distribution on Tasikmalaya as Prospective Area

Article Preview

Abstract:

The installed capacity of wind power plants at Indonesia can only generate up to 1.96 MW from 970 MW potential wind energy. The wind energy prospect in Tasikmalaya, which is part of southern java’s beach is assessed using Weibull distribution for a year. The data is compiled from monthly measurement and take frequency of maximum wind speed to define the potential of Tasikmalaya’s wind energy. The data consist of wind speed and wind direction at a 15m hub height for 12 months. Methods Of Moments (MOM) is used since it is the better parameter estimation compare to Graphical Method (GM) and Empirical Method (EM) and produce the smallest relative error. The Weibull parameter (k and c) from each month varies from 1.17 to 2.61, the scale factor ranges between 2.01 m/s to 4.27 m/s. The result of this research is represented on Weibull Probability Density Function (PDF) graph and real frequency of wind speed from observation. we can conclude that the most frequent wind speed that occur in Tasikmalaya’s area is 2 m/s, even though there are some months that has more frequent wind speed of 3 m/s like May and June. And judging from the Weibull distribution graph, February, March, May, August dan September were the most prospective windy months for this area.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

153-161

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Mohsen, B.A. Akash, Evaluation of domestic solar water heating system in Jordan using analytic hierarchy process, Energy Convers. Manag. 38 (1997) 1815-1822.

DOI: 10.1016/s0196-8904(96)00115-x

Google Scholar

[2] M. Daoudi, A.S.M. Abdelaziz, E. Mohammed, E. Elmostapha, Wind speed data and wind energy potential using Weibull distribution in Zagora, Morocco, Int. J. Renew. Energy Dev. 8 (2019) 267-273.

DOI: 10.14710/ijred.8.3.267-273

Google Scholar

[3] L. Noviani, Assessment of the Wind Power Application in Indonesia, Indones. J. Phys. Nucl. Appl. 4 (2019) 78-85.

Google Scholar

[4] M.B. Hemanth Kumar, S. Balasubramaniyan, S. Padmanaban, J.B. Holm-Nielsen, Wind energy potential assessment by Weibull parameter estimation using multiverse optimization method: A case study of Tirumala region in India, Energies 12 (2019).

DOI: 10.3390/en12112158

Google Scholar

[5] M.H. Al Buhairi, A Statistical Analysis of Wind Speed Data and An Assessment of Wind Energy Potential in Taiz-Yemen, October 9 (2006) 21-33.

Google Scholar

[6] A.K. Azad, M.G. Rasul, R. Islam, I.R. Shishir, Analysis of Wind Energy Prospect for Power Generation by Three Weibull Distribution Methods, Energy Procedia 75 (2015) 722-727.

DOI: 10.1016/j.egypro.2015.07.499

Google Scholar

[7] H. Bidaoui, I. El Abbassi, A. El Bouardi, A. Darcherif, Wind Speed Data Analysis Using Weibull and Rayleigh Distribution Functions, Case Study: Five Cities Northern Morocco, Procedia Manuf. 32 (2019) 786-793.

DOI: 10.1016/j.promfg.2019.02.286

Google Scholar

[8] R. Yendra, M. Marizal, W.I. Sawitri, A.P. Desvina, Rahmadeni, Distribusi Weibull Vs Distribusi Rayleigh Pada Pemodelan Kecepatan Angin, Semin. Nas. Teknol. Informasi, Komun. dan Ind. (2018) 639-642.

Google Scholar

[9] A.K. Azad, M.G. Rasul, M.M. Alam, S.M. Ameer Uddin, S.K. Mondal, Analysis of wind energy conversion system using Weibull distribution, Procedia Eng. 90 (2014) 725-732.

DOI: 10.1016/j.proeng.2014.11.803

Google Scholar

[10] Z.R. Shu, M. Jesson, Estimation of Weibull parameters for wind energy analysis across the UK, J. Renew. Sustain. Energy 13 (2021).

DOI: 10.1063/5.0038001

Google Scholar

[11] A. Ma, I. Devi, Analisa Statistik Kecepatan Angin dengan Menggunakan Distribusi Weibull untuk Bandara Kualanamu, (no year) 110-114.

Google Scholar

[12] Muliadi, T. Murisal Asyadi, Penentuan Parameter Weibull untuk Mendapatkan Densitas Daya Angin di Kawasan Blang Bintang Aceh Besar, Jambura J. Electr. Electron. Eng. 3 (2021) 51-55.

DOI: 10.37905/jjeee.v3i2.10385

Google Scholar

[13] K. Azad, M. Rasul, P. Halder, J. Sutariya, Assessment of wind energy prospect by Weibull distribution for prospective wind sites in Australia, Energy Procedia 160 (2019) 348-355.

DOI: 10.1016/j.egypro.2019.02.167

Google Scholar