Application of Multilayer Perceptron for Estimating Relative Humidity in Cilacap, Indonesia

Article Preview

Abstract:

In recent decades, relative humidity has become a research topic that has received increasing attention due to its important role in climate change and global warming. One of the most typical issues with relative humidity is data loss due to instrument deterioration. This research attempts to apply feature selection and hyperparameter tuning methods as an approach to optimizing the reliability of the multilayer perceptron (MLP) model to predict relative humidity values designed into the MLP-CV framework. The coefficient of determination (R2), root mean squared error (RMSE), and absolute error (MAE) are used to determine the model's correctness. The results showed that the MLP-CV model had better accuracy compared to the MLP model for predicting relative humidity missing values, with R2 = 0.788, RMSE = 1.838, and MAE = 1.431.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

192-201

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Khatibi, L. Naghipour, M.A. Ghorbani, M.T. Aalami, Predictability of relative humidity by two artificial intelligence techniques using noisy data from two Californian gauging stations, Neural Comput. Appl. 23 (2013) 2241-2252.

DOI: 10.1007/s00521-012-1175-z

Google Scholar

[2] L.N. Gunawardhana, G.A. Al-Rawas, S. Kazama, An alternative method for predicting relative humidity for climate change studies, Meteorol. Appl. 24 (2017) 551-559.

DOI: 10.1002/met.1641

Google Scholar

[3] M. Adnan, R.M. Adnan, S. Liu, M. Saifullah, Y. Latif, M. Iqbal, Prediction of relative humidity in a high elevated basin of western Karakoram by using different machine learning models, in: Weather Forecasting, IntechOpen, 2021.

DOI: 10.5772/intechopen.98226

Google Scholar

[4] A.S. Abobakr Yahya, A.N. Ahmed, F.B. Othman, R.K. Ibrahim, H.A. Afan, A. El-Shafie, C.M. Fai, M.S. Hossain, M. Ehteram, A. Elshafie, Water quality prediction model based on support vector machine model for ungauged river catchment under dual scenarios, Water (Basel) 11 (2019) 1231.

DOI: 10.3390/w11061231

Google Scholar

[5] M. Shad, Y.D. Sharma, A. Singh, Forecasting of monthly relative humidity in Delhi, India, using SARIMA and ANN models, Model Earth Syst. Environ. 8 (2022) 4843-4851.

DOI: 10.1007/s40808-022-01385-8

Google Scholar

[6] S. Pinthong, P. Ditthakit, N. Salaeh, M.A. Hasan, C.T. Son, N.T.T. Linh, S. Islam, K.K. Yadav, Imputation of missing monthly rainfall data using machine learning and spatial interpolation approaches in Thale Sap Songkhla River Basin, Thailand, Environ. Sci. Pollut. Res. (2022).

DOI: 10.1007/s11356-022-23022-8

Google Scholar

[7] E.R. Coutinho, R.M. da Silva, J.G.F. Madeira, P.R. de O.S. Coutinho, R.A.M. Boloy, A.R.S. Delgado, Application of artificial neural networks (ANNs) in the gap filling of meteorological time series, Rev. Bras. Meteorol. 33 (2018) 317-328.

DOI: 10.1590/0102-7786332013

Google Scholar

[8] E. Dyukarev, Comparison of artificial neural network and regression models for filling temporal gaps of meteorological variables time series, Appl. Sci. 13 (2023) 2646.

DOI: 10.3390/app13042646

Google Scholar

[9] A. Ali Slieman, D. Kozlov, Estimation and filling of missing runoff data at Al-Jawadiyah station using artificial neural networks, E3S Web Conf. 263 (2021) 05034.

DOI: 10.1051/e3sconf/202126305034

Google Scholar

[10] M. Addi, Y. Gyasi-Agyei, E. Obuobie, L.K. Amekudzi, Evaluation of imputation techniques for infilling missing daily rainfall records on river basins in Ghana, Hydrol. Sci. J. 67 (2022) 613-627.

DOI: 10.1080/02626667.2022.2030868

Google Scholar

[11] A. Aieb, K. Madani, M. Scarpa, B. Bonaccorso, K. Lefsih, K.A. Lefsih, A new approach for processing climate missing databases applied to daily rainfall data in Soummam watershed, Algeria, Heliyon 5 (2019) 1247.

DOI: 10.1016/j.heliyon.2019.e01247

Google Scholar

[12] M. Dash, H. Liu, Feature selection for classification, Intell. Data Anal. 1 (1997) 131-156.

Google Scholar

[13] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, Pearson Education, 2005.

Google Scholar

[14] P. Refaeilzadeh, L. Tang, H. Liu, Cross-validation, in: Encyclopedia of Database Systems, Springer US, Boston, MA, 2009, pp.532-538.

DOI: 10.1007/978-0-387-39940-9_565

Google Scholar

[15] J. Sarwono, Metode Penelitian Kuantitatif dan Kualitatif, Suluh Media, 2018.

Google Scholar

[16] P. Subagyo, Forecasting: Konsep dan Aplikasi, BPFE-UGM, 2009.

Google Scholar

[17] N.A.A. Norazizi, S.M. Deni, Comparison of artificial neural network (ANN) and other imputation methods in estimating missing rainfall data at Kuantan station, in (2019) 298-306.

DOI: 10.1007/978-981-15-0399-3_24

Google Scholar

[18] J. Das Agrawal, ANN in forecasting missing rainfall data, E3S Web Conf. 405 (2023) 04017.

DOI: 10.1051/e3sconf/202340504017

Google Scholar

[19] S.-L. Shen, N. Zhang, A. Zhou, Z.-Y. Yin, Enhancement of neural networks with an alternative activation function tanhLU, Expert Syst. Appl. 199 (2022) 117181.

DOI: 10.1016/j.eswa.2022.117181

Google Scholar