Evaluation of Water Depth Extraction Using Empirical Method with Sentinel 2 Image on Google Earth Engine in South Sea Island of Bangka Belitung

Article Preview

Abstract:

The development of remote sensing technology based on cloud computing is an important concern, especially in providing convenience in processing and storing images for various importance. This can be utilized in hydrographic activities in terms of determining depth values using the Satellite Derived Bathymetry (SDB) method. This research focuses on the utilization of Google Earth Engine (GEE) technology in obtaining depth values using the SDB method with Stumpf and Lyzenga algorithms. The area used in this research is on the island of Bangka Belitung which has different characteristics of waters such water depth, water clarity, and water bottom cover. The results of the research conducted were evaluated with the Indonesian National Standard (SNI) 8202 in 2015 regarding the accuracy of the base map. Depth extraction using 2,662 depth sample data. The results of this study show that the Stumpf model provides a better accuracy value compared to the Lyzenga model at 0 - 10 meters. But at 10-25 meters the Lyzenga model produces a better accuracy value than the Stumpf model. The best correlation value was obtained with the Lyzenga model, which is equal to 0.841 while the correlation value of the Stumpf model is 0.753. The best RMSE was obtained at 1.7 m with a depth range of 0 - 5 m with the Stumpf method. The results of the accuracy evaluation of the two empirical bathymetry models pass the requirements of SNI 8202 of 2015 regarding the Accuracy of the Base Map for making Lingkungan Pantai Indonesia (LPI) and Lingkungan Laut Nasional (LLN) maps at a scale of 1: 50,000 with a 20 m contour interval.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

595-609

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Amelia, Rizky., & Darmansyah. (2023). Potensi Google Earth Engine untuk Identifikasi Objek Wilayah Perairan pada Citra Satelit Sentinel-2. Journal of Mathematics & Information Technology, Volume 01, 19–24.

Google Scholar

[2] Arya, A., Winarso, G., & Kurniawan, E. S. (2016). Ekstraksi Kedalaman Laut Menggunakan Data Spot-7 di Teluk Belangbelang Mamuju. Jurnal Hidropilar, 2(1), 15–25

DOI: 10.37875/hidropilar.v2i1.39

Google Scholar

[3] Doelling, D., Loeb, N., Wang, H., Su, W., Nguyen, C., Corbett, J., Liang, L., Mitrescu, C., ِ., Rose, ِF. ِ., & Kato, ِ. (2018). ِ'CloudsِandِtheِEarth'sِRadiantِEnergyِSystemِ (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0ِ. Journal of Climate, 31(2), 895–918

DOI: 10.1175/jcli-d-17-0208.1

Google Scholar

[4] Gao, J. (2010). "Bathymetric Mapping by Means of Remote Sensing: Methods, Accuracy and Limitations." In Physical Geography 33 (p.103–116).

DOI: 10.1177/0309133309105657

Google Scholar

[5] Ghilani, C. D., & Wolf, P. R. (2006). Adjustment Computation: Spatial Data Analysis (4th ed.) (4th ed.). Hoboken: John Wiley & Sons.

Google Scholar

[6] Ghilani, C. D., & Wolf, P. R. (2011). Adjustment computations: spatial data analysis. International Journal of Geographical Information Science, 25(2), 326–327

DOI: 10.1080/13658816.2010.501335

Google Scholar

[7] Green, E. P., Mumby, P. J., Edwards, A. J., & Clark, C. D. (2000). "Mapping Bathymetry." In A. J. Edwards (Ed.), Remote Sensing Handbook for Tropical Coastal Management (p.219–233).

Google Scholar

[8] Hochberg, E. J., Andréfouët, S., & Tyler, M. R. (2003). Sea surface correction of high spatial resolution ikonos images to improve bottom mapping in near-shore environments. IEEE Transactions on Geoscience and Remote Sensing, 41(7 PART II), 1724–1729

DOI: 10.1109/TGRS.2003.815408

Google Scholar

[9] Irwanto, D. (2018). Perkiraan batimetri perairan dangkal menggunakan citra landsat 8. Prosiding Seminar Nasional Kelautan Dan Perikanan, 4(September), 1–12.

Google Scholar

[10] Jawak, S. D., & Luis, A. J. (2015). "Spectral information analysis for the semiautomatic derivation of shallow lake bathymetry using high-resolution multispectral imagery: A case study of Antarctic coastal oasis." In Aquatic Procedia 4 (p.1331–1338).

DOI: 10.1016/j.aqpro.2015.02.173

Google Scholar

[11] Karina, C. A. (2021). Kajian Pengukuran Kedalaman Menggunakan Metode Satellite Derived Bathymetry di Area Perairan Tidak Jernih. Skripsi, Jurusan Teknik Geodesi Fakultas Teknik Universitas Gadjah Mada, Yogyakarta.

DOI: 10.21776/ub.pengairan.2022.013.02.08

Google Scholar

[12] LAPAN. (2018). Sentinel-2 Citra Satelit Resolusi Menengah. https://inderaja-catalog.lapan.go.id/application_data/default/pages/about_Sentinel-2.html

Google Scholar

[13] Lukiawan, R., Purwanto, E. H., & Ayundyahrini, M. (2019). Analisis Pentingnya Standar Koreksi Geometrik Citra Satelit Resolusi Menengah Dan Kebutuhan Manfaat Bagi Pengguna. Jurnal Standardisasi, 21(1), 45

DOI: 10.31153/js.v21i1.735

Google Scholar

[14] Lyzenga, D.R., Malinas, N.P., dan Tanis, F. J. (2006). Multispectral Bathymetry Using a Simple Physically Based Algorithm. Geoscience, IEEE Transactions on Sensing, and Remote, 44 (8) : 2, 51–59.

DOI: 10.1109/tgrs.2006.872909

Google Scholar

[15] Navionics. (2021). Navionics a Garmin Brand Catalogue. www.navionics.com

Google Scholar

[16] Nurkhayati, R., & Khakhim, N. (2016). Pemetaan Batimetri Perairan Dangkal Menggunakan Citra Quickbird Di Perairan Taman Nasional Karimun Jawa, Kabupaten Jepara, Jawa Tengah. 1–23.

DOI: 10.37875/hidropilar.v7i1.201

Google Scholar

[17] Peraturan Direktur Jendral Pengendalian Pencemaran dan Kerusakan Lingkungan Nomor. P.5/PPKL/PKL.1/10/2017 tentang Pedoman Inventarisasi Ekosistem Padang Lamun. (n.d.).

Google Scholar

[18] Prayogo, L. M., & Basith, A. (2020). Uji Performa Citra Worldview 3 dan Sentinel 2A untuk Pemetaan Kedalaman Laut Dangkal (Studi Kasus di Kepulauan Karimunjawa, Jawa Tengah). JGISE: Journal of Geospatial Information Science and Engineering, 3(2), 161

DOI: 10.22146/jgise.59572

Google Scholar

[19] Republik, P. M. K., & Indonesia. (2009). Peraturan Menteri Kehutanan Republik Indonesia Nomor : P.12/MenhutII/2012 Tentang Perubahan Kedua Atas Peraturan Menteri Kehutanan Nomor P.32/Menhut-II/2009 Tentang Tata Cara Penyusunan Rencana Teknik Rehabilitasi Hutan Dan Lahan Daerah Aliran Sungai (Rtk.

DOI: 10.24235/jm.v9i1.17087.s4371

Google Scholar

[20] Stumpf, R.P., Holderied, K., & Sinclair, M. (2003). International Journal of Remote Sensing. Limnology and Oceanography, 48 (1 part, 547–556.

Google Scholar

[21] Suryopuspito, H. D. (2017). Evaluasi Ketelitian Penentuan Kedalaman Perairan Dangkal Menggunakan Citra Satelit Pleiades. Thesis, Yogyakarta: Universitas Gadjah Mada.

Google Scholar

[22] Syaiful, S. N., Helmi, M., Widada, D. S., Widiaratih, R., Subhardjo, P., Anugroho, A., & Suryoputro, D. (2019). Analisis Digital Citra Satelit Worldview-2 untuk Ekstraksi Kedalaman Perairan Laut di. Indonesian Journal of Oceanography, 01, 6–11. http://ejournal2.undip.ac.id/index.php/ijoice/

DOI: 10.14710/ijoce.v1i1.6262

Google Scholar

[23] Tumangger, S. Boike., & Fitriani. (2019). Identifikasi dan Karateristik Jenis Akar Mangrove Berdasarkan Kondisi Tanah dan Salinitas Air Laut di Kuala Langsa. Jurnal Biologica Samudra, 1 No.1, 009–016.

Google Scholar

[24] Wicaksono, P. (2015). Perbandingan Akurasi Metode Band Tunggal Dan Band Rasio Untuk Pemetaan Batimetri Pada Laut Dangkal Optis. Simposium Nasional Sains Geoinformasi, IV(March), 792

Google Scholar

[25] Wicaksono, P., & dan Hafizt, M. (2017). Dark target effectiveness for dark-object subtraction atmospheric correction method on mangrove above-ground carbon stock mapping. IET Image Processing 2017, 0295.

DOI: 10.1049/iet-ipr.2017.0295

Google Scholar

[26] Yusuf. (2020). Ekstraksi Kedalaman dengan Metode Empirik Menggunakan Citra PlanetScope di Perairan Dangkal (Studi Kasus: Area Pelabuhan Tanjung Perak, Surabaya). Skripsi, Jurusan Teknik Geodesi Fakultas Teknik Universitas Gadjah Mada, Yogyakarta.

DOI: 10.21776/ub.pengairan.2022.013.02.08

Google Scholar