Spatial Modeling of Volcano Merapi Lahar Flow Post 2010 Eruption in Krasak River for Hazard Zone Prediction

Article Preview

Abstract:

This study aims to model lahar flow from Volcano Merapi in the Krasak River following the 2010 eruption. The spatial modeling results of lahar flow are used to identify and predict lahar hazard zone. The lahar flow modeling is conducted using the Laharz toolbox, utilizing DEMNAS data, and lahar volume scenarios based on historical lahar volume data for the Krasak River from 2011. Remote sensing data, specifically Sentinel-2 imagery, is used in this study with interpretation methods to derive river hydrology information, which serves as one of the validation measures for the Krasak River flow. The model is developed based on predetermined volume scenarios: Scenario I with an initial volume of 125.000 m3, Scenario II with doubled volume of 250.000 m3, Scenario III with lahar volume of 500.000 m3, and Scenario IV with lahar volume of 1.000.000 m3. The model validation is conducted using the Mount Merapi Disaster-Prone Area Map. The resulting model is applied to predict hazard zone using a buffer method along the river, with specific distances defined. The model results indicate that as the lahar volume scenario increases, the lahar flow model can impact the prediction of lahar hazard zone.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

652-661

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Adri, Wahyudi., L.M. Sabri, d & Yasser Wahyuddin. Pembuatan Peta Jalur Evakuasi Bencana Gunung Api dan Persebaran Lokasi Shelter Menggunakan Metode Network Analyst (Studi Kasus: Gunung Merapi, Boyolali Magelang). Jurnal Geodesi Undip, 10 (1), 189-196, (2021).

DOI: 10.24815/jpg.v7i2.28458

Google Scholar

[2] Auditia, F., & Nugroho, H. Evaluation of ASTER, SRTM, and DEMNAS DEM Data for Lahar Modelling: A Case Study of Lahar from Mount Galunggung, Indonesia. Prosiding FTSP Series, 464-466, (2021)

Google Scholar

[3] Arisandy, A. S. & Sukojo, B. M. Studi Penentuan Aliran Hidrologi Metode Steepest Slope dan Metode Lowest Heights dengan Aster GDEMV2 dan Alos Palsar (Studi Kasus: Gunung Kelud, Jawa Timur). Jurnal Teknik ITS, 15 (2), A837-A841, (2016).

DOI: 10.12962/j23373539.v5i2.17242

Google Scholar

[4] Armijon, Setyanto, Angin, G. P., Rahmadi, E., & Purba, A. Pemodelan Analisis Spasial Aliran Lahar Dingin untuk Mitigasi Bencana Gunung Merapi. (Laporan Penelitian, Fakultas Teknik Sipil, Universitas Lampung: Lampung). (2018), Available online: http://repository.lppm.unila.ac.id/13969/ (accessed on 29 May 2024).

Google Scholar

[5] De Bélizal, E., Lavigne, F., Hadmoko, D. S., Degeai, J. P., Dipayana, G. A., Mutaqin, B. W., Marfai, M. A., Coquet, M., Mauff, B. Le, Robin, A. K., Vidal, C., Cholik, N., & Aisyah, N. Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk. Journal of Volcanology and Geothermal Research, 261, 330-347, (2013).

DOI: 10.1016/j.jvolgeores.2013.01.010

Google Scholar

[6] Dille, A., Poppe, S., Mossoux, S., Soulé, H., & Kervyn, M. Modeling Lahars on a Poorly Eroded Basaltic Shield: Karthala Volcano, Grande Comore Island. Frontiers in Earth Science, 8, 369. (2020).

DOI: 10.3389/feart.2020.00369

Google Scholar

[7] Indarto, Indarto., Wahyuningsih, S., Usman, F., & Rohman, L. Pembuatan Jaringan Sungai Dan Karakteristik Topografi DAS dari DEM- JATIM. Media Teknik Sipil, 8 (2), 99-108, (2008).

Google Scholar

[8] Kurniawan, V. O., Mei, E. T. W. & Hadmoko, D. S. Pemodelan Aliran Lahar Gunung Api Merapi untuk Perhitungan Risiko Kerugian pada Penggunaan Lahan Terdampak di Bantaran Sungai Boyong, Pakem, Sleman, D.I. Yogyakarta. Journal of Geography of Tropical Environments, 3 (2), 22-44, (2019).

DOI: 10.7454/jglitrop.v3i2.64

Google Scholar

[9] Pemerintah Kabupaten Sleman. Dokumen Kontijensi Gunung Api Merapi, 2012.

Google Scholar

[10] Pitang, Yuliani., Ode Irman, & Yosefina Nelista. The Effect of Training on Preparedness Disaster on The Preparedness of Elementary School Children in Overcoming the Disaster of Volcano Eruption of Mount Egon in Lere Catholic Elementary School. NurseLine Journal. 4 (2), 139-145, (2019).

DOI: 10.19184/nlj.v4i2.14356

Google Scholar

[11] Rachmawati, L. Pengetahuan Penduduk Terhadap Peta Kawasan Rawan Bencana dan Mitigasi Bencana Merapi. Jurnal Kependudukan Indonesia, 13 (2), 143-156, (2018).

DOI: 10.21831/gm.v14i1.13778

Google Scholar

[12] Sawungrana, A. R., & Purwanto, T. H. Pemanfaatan Data ASTER GDEM dan SRTM untuk Pemodelan Aliran Lahar Gunung Kelud Pasca Erupsi 2014. Jurnal Bumi Indonesia, 6 (1). 1-9, (2017).

Google Scholar

[13] Schilling, S. P. LAHARZ: GIS programs for automated mapping of lahar inundation hazard zones. U. S. Geological Survey, Washington, 1998.

DOI: 10.3133/ofr98638

Google Scholar

[14] Wibowo, S. B., Lavigne, F., Mourot, P., Métaxian, J., Zeghdoudi, M., Virmoux, C., Sukatja, C. B., Hadmoko, D. S., Mutaqin, B. W. Analyse couplée d'images vidéo et de données sismiques pour l'étude de la dynamique d'écoulement des lahars sur le volcan Merapi, Indonésie. Géomorphologie: relief, processus, environnement, 21 (3), 251 – 266, (2015).

DOI: 10.4000/geomorphologie.11090

Google Scholar