Object-Based Image Analysis for LULC Change Detection: Impact of Yogyakarta International Airport Development

Article Preview

Abstract:

The construction of Yogyakarta International Airport (YIA), driven by the limitations of land use at the former Adisutjipto Airport, is a key focal point of this research. The development of YIA has led to significant land cover changes in 2016 to 2021, transforming predominantly agricultural and fisheries land into built-up areas. Numerous studies have utilized remote sensing data to analyze land cover and land use (LULC) changes in Kulonprogo Regency, applying a range of remote sensing analytical methods. The most substantial LULC changes have been observed in Temon District, where agricultural land has sharply decreased, coinciding with the expansion of built-up areas. This study aims to further examine land use changes in Temon District, employing object-based classification techniques to enhance the accuracy of land cover analysis. In this study, OBIA classified land cover with 80% accuracy for the 2016 image (scale 100, shape 0.7, compactness 0.7) and 86% for the 2021 image (scale 100, shape 0.9, compactness 0.2). The most significant change was a 537-hectare reduction in paddy field.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

685-697

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dinas Pariwisata Daerah Istimewa Yogyakarta, "Data Kinerja Dinas Pariwisata: Jumlah Wisatawan Nusantara dan Mancanegara yang Menggunakan Hotel Bintang dan Non-Bintang (IKU)." Accessed: Jan. 03, 2023. [Online]. Available: http://bappeda.jogjaprov.go.id/dataku/data_dasar/index/603-data-kinerja-dinas-pariwisata?id_skpd=23#11

DOI: 10.32477/jrabi.v3i2.720

Google Scholar

[2] A. Nurkholidah and P. H. Pratiwi, "Dampak Sosial Ekonomi Pembangunan Bandara Internasional Yogyakarta Bagi Masyarakat Purworejo," Dimensia - Jurnal Kajian Sosiologi, vol. 9, no. 1, p.46–58, 2020.

DOI: 10.21831/dimensia.v9i1.38930

Google Scholar

[3] W. Ayuningtyas, "Analisis Dampak Sosial Ekonomi Pembangunan Bandar Udara Internasional Yogyakarta (Yia) Bagi Kepala Keluarga Di Desa Glagah Kulon Progo," Jurnal Kewarganegaraan, vol. 6, no. 1, p.858–865, 2022.

Google Scholar

[4] S.S. Fatimah and A. Rahayu, "Pengaruh Pembangunan Bandara Yogyakarta International Airport (YIA) Terhadap Pertumbuhan Ekonomi Kabupaten/Kota Provinsi D.I. Yogyakarta 2017-2022," Inisiatif: Jurnal Ekonomi, Akuntansi dan Manajemen, vol. 2, no. 2, p.105–120, 2023.

DOI: 10.30640/inisiatif.v2i2.727

Google Scholar

[5] H. Susanto, "Analisis Dampak Sosial Ekonomi dalam Pembangunan Bandara Yogyakarta International Airport (YIA) di Kabupaten Kulonprogo," Majalah Ilmiah Bijak, vol. 17, no. 1, p.1–9, Mar. 2020, [Online]. Available: http://ojs.stiami.ac.id

DOI: 10.31334/bijak.v17i1.820

Google Scholar

[6] A. Kelana, B. Kamulyan, and I. Supraba, "Kajian Peningkatan Genangan Akibat Perubahan Tata Guna Lahan Dari Mega Proyek Yogyakarta International Airport," in Seminar Nasional Pascasarjana,Departemen Teknik Sipil FT-UI, 2019, p.363–372.

Google Scholar

[7] W. Utami, A. Kuna, M. Marini, C. Sugiyanto, and N. Rahardjo, "Dampak Pembangunan Bandara Internasional Yogyakarta Terhadap Perubahan Penggunaan Lahan," Jurnal Pembangunan Wilayah dan Kota, vol. 19, no. 1, p.105–117, Mar. 2023.

DOI: 10.14710/pwk.v19i1.37429

Google Scholar

[8] D. B. A. Gafuraningtyas, "Changes In Land Cover In Temon District Impact Of Development Of Yogyakarta International Airport," Jurnal Pertanahan, vol. 12, no. 1, p.52–66, 2022.

DOI: 10.53686/jp.v13i1.194

Google Scholar

[9] I. Sukri, R. Harini, and Sudrajat, "Analisis Perubahan Penggunaan Lahan di Kabupaten Kulon Progo Menggunakan Citra Landsat," in Seminar Nasional Geografi IV Magister Geografi, 2021, p.255–263.

DOI: 10.24895/sng.2017.2-0.438

Google Scholar

[10] D. K. Nurkukuh and C. Ragil, "Dinamika Penggunaan Lahan Kecamatan Temon Sebagai Kawasan Bandara Internasional Yogyakarta," Reka Ruang, vol. 6, no. 2, p.69–74, 2023.

Google Scholar

[11] R. Alghifari Wibowo and Harintaka, "Pembuatan Model Prediksi Lahan Terbangun di Kabupaten Kulon Progo dengan Citra Satelit Penginderaan Jauh," Geoid: Journal of Geodetics and Geomatics, vol. 19, no. 1, p.18–27, 2023.

DOI: 10.12962/j24423998.v19i1.17571

Google Scholar

[12] N. N. Azizah, D. Apriyanti, J. B. Nomor, and I. Yogyakarta, "Monitoring Perubahan Penggunaan Lahan Akibat Pembangunan 'Yogyakarta International Airport' Menggunakan Citra Spot 6 Studi Kasus : Kabupaten Kulon Progo," Globe, vol. 25, no. 2, p.139–146, 2023, [Online]. Available: http://geoportal.kulonprogokab.go.id/.

Google Scholar

[13] ESA, SPOT Imagery User Guide. Airbus, 2013.

Google Scholar

[14] A. Tiwari, S. K. Sharma, A. Dixit, and V. Mishra, "UAV Remote Sensing for Campus Monitoring: A Comparative Evaluation of Nearest Neighbor and Rule-Based Classification," Journal of the Indian Society of Remote Sensing, vol. 49, no. 3, p.527–539, 2021.

DOI: 10.1007/s12524-020-01268-4

Google Scholar

[15] S. Lang, "Object-based image analysis for remote sensing applications: modeling reality – dealing with complexity," in Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications, S. and H. G. J. Blaschke Thomas and Lang, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, p.3–27.

DOI: 10.1007/978-3-540-77058-9_1

Google Scholar

[16] T. Blaschke, S. Lang, and G. J. Hay, Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications. Berlin: Springer, 2008.

DOI: 10.1007/978-3-540-77058-9

Google Scholar

[17] D. Lu and Q. Weng, "A survey of image classification methods and techniques for improving classification performance," 2007, Taylor and Francis Ltd.

DOI: 10.1080/01431160600746456

Google Scholar

[18] A. M. El-naggar, "Determination of optimum segmentation parameter values for extracting building from remote sensing images," Alexandria Engineering Journal, vol. 57, no. 4, p.3089–3097, Dec. 2018.

DOI: 10.1016/j.aej.2018.10.001

Google Scholar

[19] Trimble, User Guide: Trimble eCognition Developer for Windows Operating System. Munich: Trimble Germany GmbH, 2018.

Google Scholar

[20] Y. Oktaviana, "Analisis Penerapan Metode OBIA pada Citra Satelit Resolusi Tinggi di Area Yogyakarta International Airport Tahun 2016 dan 2021," Skripsi, Universitas Gadjah Mada, Sleman, 2023.

Google Scholar

[21] M. Baatz and A. Schape, "Multiresolution Segmentation: An Optimization Approach for  High Quality Multi-Scale Image Segmentation," Dieser Beitrag wurde nach  Begutachtung durch das Programmkomitee, p.1–12, 2000.

Google Scholar

[22] A. Setiani, Y. Prasetyo, and S. Subiyanto, "Optimalisasi Parameter Segmentasi Berbasis  Algoritma Multiresolusi Untuk Identifikasi Kawasan Industri antara Citra Satelit  Landsat dan Alos Palsar (Studi Kasus: Kecamatan Tugu Dan Genuk, Kota Semarang)," Jurnal Geodesi Undip, vol. 5, no. 4, p.112–121, 2016.

DOI: 10.14710/elipsoida.2018.3470

Google Scholar

[23] H. Xu, "Rule-based impervious surface mapping using high spatial resolution imagery," Int J Remote Sens, vol. 34, no. 1, p.27–44, 2012.

DOI: 10.1080/01431161.2012.703343

Google Scholar

[24] P. Chachondhia, A. Shakya, and G. Kumar, "Performance evaluation of machine learning algorithms using optical and microwave data for LULC classification," Remote Sens Appl, vol. 23, Aug. 2021.

DOI: 10.1016/j.rsase.2021.100599

Google Scholar