Comparative Study of Pre-Trained CNN for Pinkeye Disease Detection in Cattle and Goat Eyes

Article Preview

Abstract:

Keratoconjunctivitis, commonly known as "pinkeye" disease, significantly impacts the health and productivity of cattle and goats. This study conducts a comparative analysis of three pre-trained convolutional neural network (CNN) models - MobileNetV2, VGG16, and DenseNet - for classifying pinkeye disease images in livestock. The research comprises four phases: data collection, data preparation, modeling, and evaluation. Data collection involves a dataset of 1425 images gathered from various sources. Preprocessing includes resizing, augmentation, and dataset stratification. The study creates two CNN models tailored for cattle and goats using pre-trained CNN. MobileNetV2 consistently demonstrates superior generalization, surpassing 95% accuracy. In contrast, VGG16 and DenseNet201, while achieving higher overall accuracy, show overfitting. MobileNetV2 is identified as the most proficient model for pinkeye disease classification, advancing automated disease diagnosis in cattle and goat farming. Further validation in diverse operational contexts is recommended.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

771-780

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. T. Adesogan, A. H. Havelaar, S. L. McKune, M. Eilittä, G. E. Dahl, Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters, Glob. Food Sec. 25 (2020) 100325.

DOI: 10.1016/j.gfs.2019.100325

Google Scholar

[2] S. Sunaryo, D. Priyanto, Leptospirosis in rats and livestock in Bantul and Gunungkidul district, Yogyakarta, Indonesia, Vet. World 15 (2022) 1449–1455.

DOI: 10.14202/vetworld.2022.1449-1455

Google Scholar

[3] Aristoteles, K. Adhianto, R. Andrian, Y. N. Sari, Comparative analysis of cow disease diagnosis expert system using Bayesian network and Dempster-Shafer method, Int. J. Adv. Comput. Sci. Appl. 10 (2019) 227–235.

DOI: 10.14569/ijacsa.2019.0100427

Google Scholar

[4] J. E. Pertanian, 1*, 2, 3 1*, 4 (2020) 310–322.

Google Scholar

[5] C. M. Godde, D. Mason-D'Croz, D. E. Mayberry, P. K. Thornton, M. Herrero, Impacts of climate change on the livestock food supply chain; a review of the evidence, Glob. Food Sec. 28 (2021) 100488.

DOI: 10.1016/j.gfs.2020.100488

Google Scholar

[6] S. Gayatri, V. Gasso-tortajada, M. Vaarst, Assessing Sustainability of Smallholder Beef Cattle Farming in Indonesia: A Case Study Using the FAO SAFA Framework, J. Sustain. Dev. 9 (2016) 236.

DOI: 10.5539/jsd.v9n3p236

Google Scholar

[7] D. L. Haggard, J. O. Hanson, Pinkeye of cattle, (2019).

Google Scholar

[8] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (2016) 770–778.

Google Scholar

[9] R. Shokri, V. Shmatikov, Privacy-preserving deep learning, 2015 53rd Annu. Allert. Conf. Commun. Control. Comput. Allert. 2015 (2016) 909–910.

DOI: 10.1109/allerton.2015.7447103

Google Scholar

[10] S. S., K. Guleria, Deep Learning Models for Image Classification: Comparison and Applications, 2022 2nd Int. Conf. Adv. Comput. Innov. Technol. Eng. (ICACITE) (2022) 1733–1738.

Google Scholar

[11] I. Topaloglu, Deep Learning Based Convolutional Neural Network Structured New Image Classification Approach for Eye Disease Identification, Sci. Iran. (2022).

DOI: 10.24200/sci.2022.58049.5537

Google Scholar

[12] A.K. Bitto, I. Mahmud, Multi categorical of common eye disease detect using convolutional neural network: a transfer learning approach, Bull. Electr. Eng. Informatics 11 (2022) 2378–2387.

DOI: 10.11591/eei.v11i4.3834

Google Scholar

[13] N. Girdhar, A. Sinha, S. Gupta, DenseNet-II: an improved deep convolutional neural network for melanoma cancer detection, Soft Comput. 27 (2022) 13285–13304.

DOI: 10.1007/s00500-022-07406-z

Google Scholar

[14] J.Y. Kim, H. E. Lee, Y. H. Choi, S. J. Lee, J. S. Jeon, CNN-based diagnosis models for canine ulcerative keratitis, Sci. Rep. 9 (2019) 1–7.

DOI: 10.1038/s41598-019-50437-0

Google Scholar

[15] S. Muchuchuti, S. Viriri, Retinal Disease Detection Using Deep Learning Techniques: A Comprehensive Review, J. Imaging 9 (2023).

DOI: 10.3390/jimaging9040084

Google Scholar

[16] S. Joshi, B. Partibane, W. A. Hatamleh, H. Tarazi, C. S. Yadav, D. Krah, Learning for Classification, (2022).

Google Scholar

[17] M.A. Khder, Web scraping or web crawling: State of art, techniques, approaches and application, Int. J. Adv. Soft Comput. its Appl. 13 (2021) 144–168.

DOI: 10.15849/ijasca.211128.11

Google Scholar

[18] U. of Sydney, Cow Eye Computer Vision Project, Roboflow, Inc., 2023. https://universe.roboflow.com/university-of-sydney-zshn2/cow-eye/dataset/3 (accessed May 07, 2023).

Google Scholar

[19] Fachri, Penyakit Mata Sapi Computer Vision Project, Roboflow, Inc., 2022. https://universe.roboflow.com/fachri/penyakit-mata-sapi (accessed May 05, 2023).

Google Scholar

[20] Skripsi, Penyakit Mata Sapi Computer Vision Project, Roboflow, Inc., 2022. https://universe.roboflow.com/skripsi-qchwy/penyakit-mata-sapi-27gkq (accessed May 05, 2023).

Google Scholar

[21] Testing, Pink Eye in Goat Computer Vision Project, Roboflow, Inc., 2023. https://universe.roboflow.com/testing-vywgf/pink-eye-in-goat/dataset/1/images (accessed May 30, 2023).

Google Scholar

[22] H. Nigam, P. Biswas, Web Scraping: From Tools to Related Legislation and Implementation Using Python, (2021). Available: https://api.semanticscholar.org/CorpusID:234287916.

Google Scholar

[23] N. Adila, Implementation of Web Scraping for Journal Data Collection on the SINTA Website, Sinkron 7 (2022) 2478–2485.

DOI: 10.33395/sinkron.v7i4.11576

Google Scholar