[1]
N. Gore, S. Arkatkar, G. Joshi, and C. Antoniou, "Developing modified congestion index and congestion-based level of service," Transp. Policy 131, 97–119 (2023).
DOI: 10.1016/j.tranpol.2022.12.008
Google Scholar
[2]
Dinas Perhubungan Daerah Daerah Istimewa Yogyakarta. Transportasi-Dalam-Angka-2022.pdf - Dinas Perhubungan DIY. https://dishub.jogjaprov.go.id/files/114/Transportasi-Dalam-Angka/296/Transportasi-Dalam-Angka-2022.pdf (Accessed 9 October 2023)
DOI: 10.21776/ub.jiap.2018.004.02.9
Google Scholar
[3]
Vocational and Technology Education of Postgraduate Program, Yogyakarta State University, 55281 Yogyakarta, Indonesia., B. Mustofa, R. Hidayah, and Faculty of Engineering, Yogyakarta State University, 55281 Yogyakarta, Indonesia., "The Effect of on-Street Parking on Vehicle Velocity and Level of Service at Cik Di Tiro Street Yogyakarta," Int. J. Manag. Humanit. 4(5), 99–102 (2020).
DOI: 10.35940/ijmh.e0534.014520
Google Scholar
[4]
S.R. Samal, P.G. Kumar, J.C. Santhosh, and M. Santhakumar, "Analysis of Traffic Congestion Impacts of Urban Road Network under Indian Condition," IOP Conf. Ser. Mater. Sci. Eng. 1006(1), 012002 (2020).
DOI: 10.1088/1757-899x/1006/1/012002
Google Scholar
[5]
R. Jayashree, D.S. P, R. S, R. R, and P.K. N, in 2022 IEEE Conf. Interdiscip. Approaches Technol. Manag. Soc. Innov. IATMSI (2022), p.1–6.
Google Scholar
[6]
15914031 La Rusli, Kerugian Transportasi Akibat Kemacetan Lalu Lintas Di Yogyakarta (Transportation Losses Caused By Traffic Congestion In Yogyakarta), Master Thesis, Universitas Islam Indonesia, 2019.
Google Scholar
[7]
N. Mahmudah, B.S. Anjasmoro, and M. Muchlisin, "Traffic Congestion Evaluation at the Unsymmetrical Signalized Intersection of Sentul, Yogyakarta," IOP Conf. Ser. Mater. Sci. Eng. 1144 (1), 012099 (2021).
DOI: 10.1088/1757-899x/1144/1/012099
Google Scholar
[8]
G.P. Kurniawan, S.Z. Shalikhah, H. Shofiati, N.N. Azizah, and M. Mochtar, "Analisis Permasalahan Transportasi di Perkotaan: Studi Kasus pada Kawasan Perkotaan Yogyakarta," J. Tana Mana 2(1), 44–49 (2021).
DOI: 10.33648/jtm.v2i1.119
Google Scholar
[9]
A.I. Rifai, T. Wibowo, M. Isradi, and A. Mufhidin, "On-Street Parking and Its Impact on Road Performance: Case Comersil Area in Jakarta City," 1(1), (2020).
Google Scholar
[10]
L. Lou, Q. Li, Z. Zhang, R. Yang, and W. He, "An IoT-Driven Vehicle Detection Method Based on Multisource Data Fusion Technology for Smart Parking Management System," IEEE Internet Things J. 7(11), 11020–11029 (2020).
DOI: 10.1109/jiot.2020.2992431
Google Scholar
[11]
V. Paidi, H. Fleyeh, and R.G. Nyberg, "Deep learning-based vehicle occupancy detection in an open parking lot using thermal camera," IET Intell. Transp. Syst. 14(10), 1295–1302 (2020).
DOI: 10.1049/iet-its.2019.0468
Google Scholar
[12]
Wahyono, and K.-H. Jo, "Cumulative Dual Foreground Differences for Illegally Parked Vehicles Detection," IEEE Trans. Ind. Inform. 13(5), 2464–2473 (2017).
DOI: 10.1109/tii.2017.2665584
Google Scholar
[13]
N. Ramya, M. Annamalai, and K. Santhosh, in 2022 1st Int. Conf. Comput. Sci. Technol. ICCST (2022), p.958–962.
Google Scholar
[14]
Z. Šćekić, S. Čakić, T. Popović, and A. Jakovljević, in 2022 26th Int. Conf. Inf. Technol. IT (2022), p.1–5.
Google Scholar
[15]
D.K. Manase, Z. Zainuddin, S. Syarif, and A.K. Jaya, in 2020 Int. Semin. Intell. Technol. Its Appl. ISITIA (2020), p.194–198.
Google Scholar
[16]
F. Li, Z. He, and Y. Yu, in 2023 IEEE Int. Conf. Image Process. Comput. Appl. ICIPCA (2023), p.641–646.
Google Scholar
[17]
J. Meyer, S. Blaser, and S. Nebiker, "AI-Based 3D Detection of Parked Vehicles on a Mobile Mapping Platform Using Edge Computing," Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLIII-B1-2022, 437–445 (2022).
DOI: 10.5194/isprs-archives-xliii-b1-2022-437-2022
Google Scholar
[18]
R.An, and G.S. Hi, "Vehicle Detection And System Tracking Using Yolo V3 Model, A Computer Vision Technique," Webology Volume 19(No. 2), 1066–1073 (2022).
Google Scholar
[19]
D.-V. Bratu, S.-A. Moraru, and L. Georgeta Guşeilă, in 2019 Int. Conf. Sens. Instrum. IoT Era ISSI (2019), p.1–6.
Google Scholar
[20]
V.P.M. Gonçalves, L.P. Silva, F.L.S. Nunes, J.E. Ferreira, and L.V. Araújo, in 2021 IEEE Int. Conf. Signal Process. Commun. Comput. ICSPCC (2021), p.1–5.
Google Scholar
[21]
R. Xu, H. Lin, K. Lu, L. Cao, and Y. Liu, "A Forest Fire Detection System Based on Ensemble Learning," Forests 12(2), (2021).
DOI: 10.3390/f12020217
Google Scholar
[22]
Solawetz. What is YOLOv5? A Guide for Beginners. https://blog.roboflow.com/yolov5-improvements-and-evaluation/ (Accessed 9 October 2023).
Google Scholar
[23]
A. Sharma, "Introduction to the YOLO Family," PyImageSearch, (2022).
Google Scholar
[24]
Imane. YOLO v5 model architecture [Explained]. https://iq.opengenus.org/yolov5/ (Accessed 9 October 2023).
Google Scholar
[25]
C.-Y. Wang, A. Bochkovskiy, and H.-Y.M. Liao, in 2023 IEEECVF Conf. Comput. Vis. Pattern Recognit. CVPR (IEEE, Vancouver, BC, Canada, 2023), p.7464–7475.
Google Scholar
[26]
G. Boesch. YOLOv7: The Most Powerful Object Detection Algorithm (2023 Guide). https://viso.ai/deep-learning/yolov7-guide/ (accessed 23 August 2023).
Google Scholar
[27]
Rosebrock. OpenCV Haar Cascades. https://pyimagesearch.com/2021/04/12/opencv-haar-cascades/ (Accessed 9 October 2023).
Google Scholar
[28]
K.M. Ting, in Encycl. Mach. Learn. Data Min., edited by C. Sammut and G.I. Webb (Springer US, Boston, MA, 2017), p.260–260.
Google Scholar