Graph Coloring Application with Modified Tabu Search Algorithm in School Scheduling

Article Preview

Abstract:

Graph coloring is one of the common problems encountered in scheduling optimization. In the context of school scheduling, graph coloring is used to efficiently allocate time for various school activities. The objective of this research is to apply the Tabu Search algorithm in solving the graph coloring problem for school scheduling. This study utilizes the Tabu Search algorithm as an optimization method to find schedule solutions that satisfy all given constraints. The Tabu Search algorithm combines local search with a broader exploration mechanism. The Tabu Search algorithm is implemented by considering various important factors such as the number of subjects, time constraints, and specific preferences. In the graph coloring modeling, each subject is represented as a graph node, while the relationships between subjects that cannot take place at the same time are represented by graph edges. The results of this research show that the Tabu Search algorithm is capable of producing schedule solutions that meet all the given constraints. The found solutions have advantages in efficient time allocation, avoiding overlaps between activities, and considering the preferences compared to manual scheduling. This research contributes to the field of school scheduling by utilizing the Tabu Search algorithm from graph coloring.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 27)

Pages:

854-865

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.A. Dowsland, and J.M. Thompson, "An improved ant colony optimisation heuristic for graph colouring," Discrete Appl Math (1979) 156(3), 313–324 (2008).

DOI: 10.1016/j.dam.2007.03.025

Google Scholar

[2] F. Glover, "Future paths for integer programming and links to artificial intelligence," Comput Oper Res 13(5), 533–549 (1986).

DOI: 10.1016/0305-0548(86)90048-1

Google Scholar

[3] E.K. Burke, A. Meisels, S. Petrovic, and R. Qu, A Graph-Based Hyper Heuristic for Timetabling Problems (2004).

Google Scholar

[4] A. Slavík, Unbiased Version of Hall's Marriage Theorem in Matrix Form (n.d.). Implementasi Metode Pewarnaan Graf Menggunakan Algoritma Welch Powell untuk Simulasi Penerapan Frekuensi Radio di Jawa Timur," (n.d.).

DOI: 10.12962/j23373520.v6i2.26738

Google Scholar

[5] "22. Implementasi Metode Pewarnaan Graf Menggunakan Algoritma Welch Powell untuk Simulasi Penerapan Frekuensi Radio di Jawa Timur," (n.d.).

DOI: 10.12962/j23373520.v6i2.26738

Google Scholar

[6] L.T. Amik, M. Gama, J. Kayangan, N. 99, and D.- Riau, Implementasi Algoritma Genetika Dalam Pembuatan Jadwal Kuliah (2017).

Google Scholar

[7] "10. Tabu search for graph coloring, T-colorings and set T-colorings. ," (n.d.).

Google Scholar

[8] N. Luh Gede Pivin Suwirmayanti, I. Made Sudarsana, S. Darmayasa, S. STIKOM Bali Jl Raya Puputan No, R. Denpasar, and P. Studi Sistem Komputer, Penerapan Algoritma Genetika Untuk Penjadwalan Mata Pelajaran Implementation of Genetic Algorithm for Course Scheduling (2016).

Google Scholar

[9] J.A. Tilley, "The a-graph coloring problem," Discrete Appl Math (1979) 217, 304–317 (2017).

Google Scholar

[10] H. Budiman, Penerapan Graph Colouring Untuk Merencanakan Jadwal (n.d.).

Google Scholar

[11] P. Pewarnaan Graf Menggunakan Algoritma Welch-powell Untuk Menentukan Jadwal Bimbingan Mahasiswa, A. Widyastuty Bustan, M. Rais Salim, P. Morotai, J. Siswa Darame, K. Morotai Selatan, K. Pulau Morotai, M. Utara, P. Studi Pendidikan Guru Sekolah Dasar, F. Kip, and U. Pasifik Morotai, Implementation of Graph Colouring Using Welch-Powell Algorithm to Determine Student Mentoring Schedule (n.d.).

DOI: 10.24905/jip.v1i2.608

Google Scholar

[12] L. Candra, Penerapan Algoritma Tabu Search Untuk Penjadwalan Mata Pelajaran Di SMK SWASTA Pelita-2 AEKKANOPAN (2016).

Google Scholar

[13] Y. Jin, J.P. Hamiez, and J.K. Hao, "Algorithms for the minimum sum coloring problem: a review," Artif Intell Rev 47(3), 367–394 (2017).

DOI: 10.1007/s10462-016-9485-7

Google Scholar

[14] "34. Pencarian jalur tercepat rute perjalanan wisata dengan algoritma Tabu Search. ," (n.d.).

Google Scholar

[15] B. Hardy, R. Lewis, and J. Thompson, "Tackling the edge dynamic graph colouring problem with and without future adjacency information," Journal of Heuristics 24(3), 321–343 (2018).

DOI: 10.1007/s10732-017-9327-z

Google Scholar

[16] "16. Finding a feasible course scheduling using tabu search," (n.d.).

Google Scholar

[17] A. Hertz, and D. de Werra, "Using tabu search techniques for graph coloring," Computing 39(4), 345–351 (1987).

DOI: 10.1007/bf02239976

Google Scholar

[18] L. Di Gaspero, and A. Schaerf, Tabu Search Techniques for Examination Timetabling (n.d.).

Google Scholar

[19] F. Glover, M. Laguna, P. Pardalos, D.-Z. Du, and R. Graham, TABU SEARCH * Chapter to Appear in the Handbook of Combinatorial Optimization, 2 Nd Edition (n.d.).

Google Scholar

[20] "19. Implementasi Algoritma Genetika Pada Aplikasi Penjadwalan Perkuliahan Berbasis Web Dengan Mengadopsi Model Waterfall," (n.d.).

DOI: 10.30591/jpit.v2i2.517

Google Scholar

[21] F. Mahardika, and H. Marcos, "Penerapan Algoritma Graf Welch Powel Pada Penjadwalan Mata Kuliah Dan Jadwal Asisten Study Kasus Forum Asisten Stmik Amikom Purwokerto," Jurnal SIMETRIS 8, (2017).

DOI: 10.24176/simet.v8i2.1208

Google Scholar

[22] A.P. Rahadi, Penjadwalan Mata Kuliah Menggunakan Pewarnaan Graf Dengan Algoritma Largest First (n.d.).

DOI: 10.35974/jpd.v2i1.1067

Google Scholar

[23] "32. Implementasi Algoritma Genetika Dalam Pengembangan Sistem Aplikasi Penjadwalan Kuliah," (n.d.).

Google Scholar

[24] S.C. Chu, and H.L. Fang, "Genetic algorithms vs. Tabu search in timetable scheduling," International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 492–495 (1999).

DOI: 10.1109/kes.1999.820230

Google Scholar

[25] R. Qu, E.K. Burke, and B. McCollum, "Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems," Eur J Oper Res 198(2), 392–404 (2009).

DOI: 10.1016/j.ejor.2008.10.001

Google Scholar

[26] H.D. Lawal, I.A. Adeyanju, E.O. Omidiora, O.T. Arulogun, and O.I. Omotosho, "University Examination Timetabling Using Tabu Search," Int J Sci Eng Res 5(10), (2014).

Google Scholar

[27] P. Galinier, and A. Hertz, "A survey of local search methods for graph coloring," Comput Oper Res 33(9), 2547– 2562 (2006).

DOI: 10.1016/j.cor.2005.07.028

Google Scholar

[28] Seminar Nasional Riset Dan Teknologi Terapan 8 (RITEKTRA 8) (2018).

Google Scholar