Isotopic and Hydrochemical Analysis of the Ghis-Nekor Aquifer Morocco: Origin of Salinity and Groundwater Quality

Article Preview

Abstract:

The chemical characterization of the Ghis-Nekor aquifer has attracted significant attention from researchers in Morocco. It is a crucial indicator of the environmental situation and the socio-economic development of this Moroccan region. Indeed, it helps decision makers to conduct a conscious and sustainable management. The primary objective of this study is to investigate the origin of salinity using isopoly elements such as Stronstium and Bromide and to evaluate the physicochemical quality of groundwater in the Ghis-Nekor aquifer region and to determine the sources of pollution in order to establish maps of the qualities of the Ghis-Nekor water table. For this reason, of Ghis-Nekor aquifer 19 samples were examined during the month of July 2023, in terms of isotopic elements such as bromine (Br) and strontium (Sr) et tantalum (Ta) (03 samples), and in terms of physico-chemical parameters such as pH, temperature, electrical conductivity (EC), Chlorides, Nitrates, Ammonium, Nitrite, Sulfates, Sodium, Potassium, Bicarbonates, Calcium, orthophosphates and Magnesium . The spatial distribution of the results was visualized through thematic maps generated using a Geographic Information System (GIS), offering crucial insights for decision-making processes related to water resource management in the region.The water temperature varies between 15.1 and 49°C. The pH is close to neutral, varying between 6.65 and 7.86. The waters are classified into three distinct chemical facies: chlorinated and sulfated calcic-magnesium facies, bicarbonated calcic-magnesium facies, and chlorinated sodium-potassium facies.The degradation of water quality in the aquifer of the basin of Ghis-Nkour could have geological and anthropogenic origins. The analysis of bromide and strontium contents allows to discriminate the origin of salinity anomalies. Molar ratios such as Cl/Br, Br/Cl, and Sr/Ca are employed to distinguish areas influenced by geological factors, such as the leaching of salt formations and facies, from those impacted by anthropogenic activities.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 32)

Pages:

117-136

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Nouayti, N., D. Khattach, et M. Hilali. 2015. « Assessment of physico-chemical quality of ground water of the Jurassic aquifers inhigh basin of Ziz (Central High Atlas, Morocco) Evaluation de la qualité physico-chimique des eaux souterraines des nappes du Jurassique du haut assine Ziz (Haut Atlas central, Maroc) ». Journal of Materials and Environmental Science 6 (4): 1068‑81.

DOI: 10.4236/jgis.2015.73023

Google Scholar

[2] Nouayti, Nordine, El Khalil Cherif, Manuel Algarra, Ma Luisa Pola, Sara Fernández, Abderrahim Nouayti, Joaquim CG Esteves da Silva, Khattach Driss, Nouha Samlani, et Hilali Mohamed. 2022. « Determination of physicochemical water quality of the ghis-nekor aquifer (Al hoceima, Morocco) using hydrochemistry, multiple isotopic tracers, and the geographical information system (GIS) ». Water 14 (4): 606.

DOI: 10.3390/w14040606

Google Scholar

[3] Calow, Roger C., Alan M. MacDonald, Alan L. Nicol, et Nick S. Robins. 2010. « Ground Water Security and Drought in Africa: Linking Availability, Access, and Demand ». Groundwater 48 (2): 246‑56.

DOI: 10.1111/j.1745-6584.2009.00558.x

Google Scholar

[4] Akoteyon, Isaiah S. 2013. «Evaluation of Groundwater Quality Using Water Quality Indices in Parts of Lagos-Nigeria». Journal of Environmental Geography 6 (1‑2): 29‑36.

DOI: 10.2478/v10326-012-0004-2

Google Scholar

[5] Yuan, Yujing, Dong Liang, et Hongmei Zhu. 2017. « Optimal control of groundwater pollution combined with source abatement costs and taxes ». Journal of Computational Science 20 (mai):17‑29.

DOI: 10.1016/j.jocs.2017.03.014

Google Scholar

[6] Alaya, Mohsen Ben, Salwa Saidi, Thouraya Zemni, et Fouad Zargouni. 2014. « Suitability Assessment of Deep Groundwater for Drinking and Irrigation Use in the Djeffara Aquifers (Northern Gabes, South-Eastern Tunisia) ». Environmental Earth Sciences 71 (8): 3387‑3421.

DOI: 10.1007/s12665-013-2729-9

Google Scholar

[7] Yeh, Hsin-Fu, Cheng-Haw Lee, et Kuo-Chin Hsu. 2011. « Oxygen and Hydrogen Isotopes for the Characteristics of Groundwater Recharge: A Case Study from the Chih-Pen Creek Basin, Taiwan ». Environmental Earth Sciences 62 (2): 393‑402.

DOI: 10.1007/s12665-010-0534-2

Google Scholar

[8] Abdullah, Twana O., Salahalddin S. Ali, Nadhir A. Al-Ansari, et Sven Knutsson. 2020. « Assessment of groundwater vulnerability to pollution using two different vulnerability models in Halabja-Saidsadiq Basin, Iraq ». Groundwater for Sustainable Development 10:100276.

DOI: 10.1016/j.gsd.2019.100276

Google Scholar

[9] Zhang, Yan, Fadong Li, Qiuying Zhang, Jing Li, et Qiang Liu. 2014. « Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes ». Science of The Total Environment 490 (août): 213‑22.

DOI: 10.1016/j.scitotenv.2014.05.004

Google Scholar

[10] Ouhamdouch, Salah, Mohammed Bahir, Driss Ouazar, Paula Maria Carreira, et Kamel Zouari. 2019. « Evaluation of Climate Change Impact on Groundwater from Semi-Arid Environment (Essaouira Basin, Morocco) Using Integrated Approaches ». Environmental Earth Sciences 78 (15): 449.

DOI: 10.1007/s12665-019-8470-2

Google Scholar

[11] Cloutier, Vincent, René Lefebvre, René Therrien, et Martine M. Savard. 2008. « Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system ». Journal of Hydrology 353 (3): 294‑313.

DOI: 10.1016/j.jhydrol.2008.02.015

Google Scholar

[12] Yidana, Sandow, Aliou Abdul Samed, Bruce Banoeng-Yakubo, et Prosper Nude. 2011. « Characterization of the Hydrogeological Conditions of Some Portions of the Neoproterozoic Voltaian Supergroup in Northern Ghana ». Journal of Water Resource and Protection 3 (janvier): 861‑75.

DOI: 10.4236/jwarp.2011.312096

Google Scholar

[13] Rodier Jean. 2009. L'analyse de l'eau / Jean Rodier, Bernard Legube, Nicole Merlet et coll. 9e édition entièrement mise à jour. Paris: Dunod.

Google Scholar

[14] Saadi, Omar, Fouad Dimane, Nordine Nouayti, Abderrahime Nouayti, et Abdelhak Bourjila. 2024. «Study of Hydrochemical Characteristics in the Middle Moulouya Basin of Morocco». Ecological Engineering & Environmental Technology 25. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-a612431b-2900-4641-8322-fc840585c7bb.

DOI: 10.12912/27197050/181167

Google Scholar

[15] Taoufiq, Latifa, I. Kacimi, Mohamed Saadi, Amina Chlouchi, Anjoud HARMOUZI, Khadija Ouarrak, Ilham Lhilali, et al. 2023. « Tropical Journal of Natural Product Research Original Research Article Assessment of the Piezometric and Rainfall Levels of the Groundwater in the Angads Plain, Northern Morocco ». Tropical Journal of Natural Product Research 7 (décembre):5424‑28.

DOI: 10.26538/tjnpr/v7i12.9

Google Scholar

[16] Taoufik Ahalli, Hasan Ouakhir, Nordine Nouyati, Driss Khattach, Nadia Ennaji ,Mimoun Goumih, Aziz Maziane, Anass Aynaou, Fatima Zahra Talbi6. 2018. « Impact of precipitation intensity and drought patterns on groundwater storage fluctuations within the Ghis-Nekor aquifer (Morocco)) », Ecological Engineering & Environmental Technology, 2025, 26(2), 323–34

DOI: 10.12912/27197050/199339

Google Scholar

[17] El Fadel, Derradji, Nacer Kherici, Michèle Romeo, et Raoul Caruba. 2004. « Aptitude des eaux de la vallée de la Seybouse à l'irrigation (Nord-Est algérien) ». Science et changements planétaires / Sécheresse 15 (janvier): 353‑60.

DOI: 10.1051/lhb:200501010

Google Scholar

[18] «(Todd, 1980)». s. d. Research Gate. Consulté le 4 janvier 2025. https://www.researchgate.net/figure/Classification-of-water-on-the-basis-of-TDS-value-Todd-1980_tbl5_247407624.

Google Scholar

[19] Elgettafi, M., A. Elmandour, M. Himi, et A. Casas. 2013. « The Use of Environmental Markers to Identify Groundwater Salinization Sources in a Neogene Basin, Kert Aquifer Case, NE Morocco ». International Journal of Environmental Science and Technology 10 (4): 719‑28.

DOI: 10.1007/s13762-012-0164-1

Google Scholar

[20] Aeschbach-Hertig, W., H. El-Gamal, K. Dahab, R. Friedrich, R. Kipfer, et I. Hajdase. 2007. « Identifying and dating the origin of groundwater resources in reclamation areas of Egypt ». Advances in Isotope Hydrology and its Role in Sustainable Water Resources Management. International Atomic Energy Agency (IAEA), Vienna, 395‑403.

Google Scholar

[21] Baite, Wissal, A. Boukdir, A. Zitouni, S. D. Dahbi, H. Mesmoudi, A. Elissami, E. Sabri, et H. Ikhmerdi. 2018. «Diagnosis of the Ghiss Nekor Aquifer in Order to Elaborate the Aquifer Contract». Édité par A. Boukdir et M. El Mabrouki. E3S Web of Conferences 37:01006.

DOI: 10.1051/e3sconf/20183701006

Google Scholar

[22] Ghalit, Mohammad, E. B. Yousfi, M. Zouhairi, E. Gharibi, et Jean Denis Taupin. 2017. « Hydrochemical characterization of groundwater in the Nekor basin located in the North-East of the Rif of Morocco ». Moroccan Journal of Chemistry 5 (2): 5‑2.

Google Scholar

[23] Taoufiq, Latifa, Ilias Kacimi, Mohamed Saadi, Jamal Mabrouki, Nordine Nouayti, Nadia Kassou, Tarik Bouramtane, et Karima El-Mouhdi. 2024. «Determination of the Physico-Chemical and Bacteriological Characteristics of the Groundwater of Angads (Oujda, Morocco) by Principal Component Analysis (PCA)». In Technical and Technological Solutions Towards a Sustainable Society and Circular Economy, édité par Jamal Mabrouki et Azrour Mourade, 509‑18. World Sustainability Series. Cham: Springer Nature Switzerland.

DOI: 10.1007/978-3-031-56292-1_41

Google Scholar