[1]
A.M. Catai, C.M. Pastre, M.F. de Godoy, E. da Silva, A.C. de Medeiros-Takahashi and L.C.M. Vanderlei, Heart rate variability: are you using it properly? Standardisation checklist of procedures, Braz. J. Phys. Ther. 24(2) (2020) 91–102.
DOI: 10.1016/j.bjpt.2019.02.006
Google Scholar
[2]
G. Quer, P. Gouda, M. Galarnyk, E.J. Topol and S.R. Steinhubl, Inter- and intra-individual variability in daily resting heart rate and its associations with age, sex, sleep, bmi, and time of year: retrospective, longitudinal cohort study of 92,457 adults, PloS One. 15(2) (2020) e0227709.
DOI: 10.1371/journal.pone.0227709
Google Scholar
[3]
R. Tiwari, R. Kumar, S. Malik, T. Raj and P. Kumar, Analysis of heart rate variability and implication of different factors on heart rate variability, Curr. Cardiol. Rev. 17(5) (2021) e160721189770.
DOI: 10.2174/1573403x16999201231203854
Google Scholar
[4]
W.N. Mratbaevna and S. Farrux, The structure of the heart and its physiology in regular athletes, ACADEMICIA: An International Multidisciplinary Research Journal. 13(8) (2023) 41–46.
DOI: 10.5958/2249-7137.2023.00079.4
Google Scholar
[5]
A. Selzer, Understanding heart disease, University of California Press, (2023).
Google Scholar
[6]
G.A. Roth, G.A. Mensah and V. Fuster, The global burden of cardiovascular diseases and risks: A compass for global action, J Am Coll Cardiol. 76(25) (2020) 2980–2981.
DOI: 10.1016/j.jacc.2020.11.021
Google Scholar
[7]
M. Vaduganathan, G.A. Mensah, J.V. Turco, V. Fuster and G.A. Roth, The global burden of cardiovascular diseases and risk: A compass for future health, J Am Coll Cardiol. 80(25) (2022) 2361–2371.
DOI: 10.1016/j.jacc.2022.11.005
Google Scholar
[8]
World Health Organization, Cardiovascular diseases (CVDs). (2021). Retrieved from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
Google Scholar
[9]
G.A. Roth, G.A. Mensah, C.O. Johnson, G. Addolorato, E. Ammirati, L.M. Baddour, N.C. Barengo, A.Z. Beaton, E.J. Benjamin, C.P. Benziger, A. Bonny, M. Brauer, M. Brodmann, T.J. Cahill, J. Carapetis, A.L. Catapano, S.S. Chugh, L.T. Cooper, J. Coresh, … GBD-NHLBI-JACC global burden of cardiovascular diseases writing group, Global Burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 Study, J Am Coll Cardiol. 76(25) (2020) 2982–3021.
DOI: 10.1016/j.numecd.2025.103848
Google Scholar
[10]
Z. Zou, K. Cini, B. Dong, Y. Ma, J. Ma, D.P. Burgner, and G.C. Patton, Time trends in cardiovascular disease mortality across the BRICS: An age-period-cohort analysis of key nations with emerging economies using the global burden of disease study 2017, Circulation. 141(10) (2020) 790–799.
DOI: 10.1161/circulationaha.119.042864
Google Scholar
[11]
F. Bray, M. Laversanne, B. Cao, C. Varghese, B. Mikkelsen, E. Weiderpass and I. Soerjomataram, Comparing cancer and cardiovascular disease trends in 20 middle- or high-income countries 2000-19: A pointer to national trajectories towards achieving sustainable development goal target 3.4, Cancer Treat. Rev. 100 (2021) 102290.
DOI: 10.1016/j.ctrv.2021.102290
Google Scholar
[12]
Y. Li, G.-Y. Cao, W.-Z. Jing, J. Liu and M. Liu, Global trends and regional differences in incidence and mortality of cardiovascular disease, 1990-2019: Findings from 2019 global burden of disease study, Eur. J. Prev. Cardiol. 30(3) (2023) 276–286.
DOI: 10.1093/eurjpc/zwac285
Google Scholar
[13]
A.A. Nancy, D. Ravindran, P.M.D. Raj Vincent, K. Srinivasan and D. Gutierrez Reina, IoT-cloud-based smart healthcare monitoring system for heart disease prediction via deep learning, Electronics. 11(15) (2022) 2292.
DOI: 10.3390/electronics11152292
Google Scholar
[14]
G. Prieto-Avalos, N.A. Cruz-Ramos, G. Alor-Hernández, J.L. Sánchez-Cervantes, L. Rodríguez-Mazahua and L.R. Guarneros-Nolasco, Wearable devices for physical monitoring of heart: A review, Biosensors. 12(5) (2022) 292.
DOI: 10.3390/bios12050292
Google Scholar
[15]
S. Chen, J. Qi, S. Fan, Z. Qiao, J.C. Yeo and C.T. Lim, Flexible wearable sensors for cardiovascular health monitoring, Advanced Healthcare Materials. 10(17) (2021) e2100116.
DOI: 10.1002/adhm.202100116
Google Scholar
[16]
R. Gajda, Is continuous ECG recording on heart rate monitors the most expected function by endurance athletes, coaches, and doctors?, Diagnostics. 10(11) (2020) 867.
DOI: 10.3390/diagnostics10110867
Google Scholar
[17]
A.A.T. Schuurmans, P. de Looff, K.S. Nijhof, C. Rosada, R.H.J. Scholte, A. Popma and R. Otten, Validity of the empatica E4 wristband to measure heart rate variability (HRV) parameters: A comparison to electrocardiography (ECG), J Med Syst. 44(11) (2020) 190.
DOI: 10.1007/s10916-020-01648-w
Google Scholar
[18]
M.A. Serhani, H.T. El Kassabi, H. Ismail and A.N. Navaz, ECG monitoring systems: review, architecture, processes, and key challenges, Sensors. 20(6) (2020) 1796.
DOI: 10.3390/s20061796
Google Scholar
[19]
A. Ni, A. Azarang, and N. Kehtarnavaz, A review of deep learning-based contactless heart rate measurement methods, Sensors. 21(11) (2021) 3719.
DOI: 10.3390/s21113719
Google Scholar
[20]
A.I. Taloba, R. Alanazi, O.R. Shahin, A. Elhadad, A. Abozeid and R.M. Abd El-Aziz, Machine algorithm for heartbeat monitoring and arrhythmia detection based on ECG systems, Comput. Intell. Neurosci. 1 (2021) 7677568.
DOI: 10.1155/2021/7677568
Google Scholar
[21]
B. Sumali, Y. Mitsukura, and T. Nishimura, Contactless continuous heart rate monitoring system using ballistocardiography, PloS One. 17(7) (2022.) e0272072.
DOI: 10.1371/journal.pone.0272072
Google Scholar
[22]
Z.A.H. Ali, Z.K.A. Araibi, N.A.M. Hamza and R.M.F. Mahdi, Detection and monitoring of ECG signals, European Journal of Modern Medicine and Practice. 4(8) (2024) 537–553.
Google Scholar
[23]
E. Lam, S. Aratia, J. Wang and J. Tung, Measuring heart rate variability in free-living conditions using consumer-grade photoplethysmography: Validation study, JMIR Biomedical Engineering. 5(1) (2020) e17355.
DOI: 10.2196/17355
Google Scholar
[24]
J. Allen, D. Zheng, P.A. Kyriacou and M. Elgendi, Photoplethysmography (PPG): State-of-the-art methods and applications, Physiological Measurement. 42(10): (2021) 100301.
DOI: 10.1088/1361-6579/ac2d82
Google Scholar
[25]
S. Blok, M.A. Piek, I.I. Tulevski, G.A. Somsen and M.M. Winter, The accuracy of heartbeat detection using photoplethysmography technology in cardiac patients, J. Electrocardiol. 67 (2021) 148–157.
DOI: 10.1016/j.jelectrocard.2021.06.009
Google Scholar
[26]
P.P. Banik, S. Hossain, T.-H. Kwon, H. Kim and K.-D.Kim, Development of a wearable reflection-type pulse oximeter system to acquire clean PPG signals and measure pulse rate and SpO2 with and without finger motion, Electronics. 9(11) (2020) 1905.
DOI: 10.3390/electronics9111905
Google Scholar
[27]
E. Mejía-Mejía, J.M. May, R. Torres and P.A. Kyriacou, Pulse rate variability in cardiovascular health: A review on its applications and relationship with heart rate variability, Physiological Measurement. 41(7) (2020) 07TR01.
DOI: 10.1088/1361-6579/ab998c
Google Scholar
[28]
L. Alkhoury, J.-W. Choi, C. Wang, A. Rajasekar, S. Acharya, S. Mahoney, B.S. Shender, L. Hrebien and M. Kam, Heart-rate tuned comb filters for processing photoplethysmogram (PPG) signals in pulse oximetry, J. Clin. Monit. Comput. 35(4) (2021) 797–813.
DOI: 10.1007/s10877-020-00539-2
Google Scholar
[29]
M.A. Motin, P.P. Das, C.K. Karmakar and M. Palaniswami, Compact pulse oximeter designed for blood oxygen saturation and heart rate monitoring, 3rd International Conference on Electrical and Electronic Engineering. (2021) 125–128.
DOI: 10.1109/iceee54059.2021.9718773
Google Scholar
[30]
M. Nitzan and Z. Ovadia-Blechman, Physical and physiological interpretations of the PPG Signal, Photoplethysmography. (2022) 319-340.
DOI: 10.1016/b978-0-12-823374-0.00009-8
Google Scholar
[31]
F. Sarhaddi, K. Kazemi, I. Azimi, R. Cao, R., H. Niela-Vilén, A. Axelin, P. Liljeberg and A.M. Rahmani, A Comprehensive Accuracy Assessment of Samsung Smartwatch Heart Rate and Heart Rate Variability, PloS One. 17(12) (2022) e0268361.
DOI: 10.1371/journal.pone.0268361
Google Scholar
[32]
C. Spaccarotella, A. Polimeni, C. Mancuso, G. Pelaia, G. Esposito and C. Indolfi, Assessment of non-invasive measurements of oxygen saturation and heart rate with an apple smartwatch: Comparison with a standard pulse oximeter, J. Clin. Med. 11(6) (2022) 1467.
DOI: 10.3390/jcm11061467
Google Scholar
[33]
C. Nwibor, S. Haxha, M.M. Ali, M. Sakel, A.R. Haxha, K. Saunders and S. Nabakooza, Remote health monitoring system for the estimation of blood pressure, heart rate, and blood oxygen saturation level, IEEE Sensors Journal. 23(5) (2023) 5401–5411.
DOI: 10.1109/jsen.2023.3235977
Google Scholar
[34]
M.M. Islam, A. Rahaman and M.R. Islam, Development of a smart healthcare monitoring system in IoT environment, SN Computer Science, 1 (2020) 1-11.
DOI: 10.1007/s42979-020-00195-y
Google Scholar
[35]
E.A.A. Karajah and I. Ishaq, Online monitoring health station using arduino mobile connected to cloud service: Heart monitor system. International Conference on Promising Electronic Technologies. (2020) 38-43.
DOI: 10.1109/icpet51420.2020.00016
Google Scholar
[36]
S.S. Khamitkar and M. Rafi, IoT based system for heart rate monitoring, Int. J. Eng. Res. Technol. 9(7) (2020) 1563-1571.
Google Scholar
[37]
P. Sihombing, Y.E. Barus, S. Sembiring and E.M. Zamzami, The development of heart rate detection using arduino microcontroller and android, in Journal of Physics: Conference Series. 1566(1) (2020) 012027.
DOI: 10.1088/1742-6596/1566/1/012027
Google Scholar
[38]
N.H. Wijaya, F.A. Fauzi, E.T. Helmy, P.T. Nguyen and R.A. Atmoko, The design of heart rate detector and body temperature measurement device using ATMega16, J. Robot. Control. 1(2) (2020) 40-43.
DOI: 10.18196/jrc.1209
Google Scholar
[39]
Y. Devis, Y. Irawan, F. Zoromi and M.R. Amartha, Monitoring system of heart rate, temperature and infusion in patients based on microcontroller (Arduino Uno), Journal of Physics: Conference Series. 1845(1) (2021) 012069.
DOI: 10.1088/1742-6596/1845/1/012069
Google Scholar