[1]
Raj, A. B., & Majumder, A. K. (2019). Historical perspective of free space optical communications: from the early dates to today's developments. IET communications, 13(16), 2405-2419.
DOI: 10.1049/iet-com.2019.0051
Google Scholar
[2]
Alimi, I. A., & Monteiro, P. P. (2024). Revolutionizing free-space optics: A survey of enabling technologies, challenges, trends, and prospects of beyond 5g free-space optical (fso) communication systems. Sensors (Basel, Switzerland), 24(24), 8036.
DOI: 10.3390/s24248036
Google Scholar
[3]
Ata, Y., Al-Sallami, F. M., Gökçe, M. C., Vegni, A. M., Rajbhandari, S., & Baykal, Y. (2025). Optical wireless communication in atmosphere and underwater: statistical models, improvement techniques, and recent applications. IEEE Communications Surveys & Tutorials, 28, 4248-4284.
DOI: 10.1109/comst.2025.3649735
Google Scholar
[4]
Zhu, Z., Janasik, M., Fyffe, A., Hay, D., Zhou, Y., Kantor, B., Winder, T., Boyd, R. W., Leuchs, G., & Shi, Z. (2021). Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nature Communications, 12, 1666.
DOI: 10.1038/s41467-021-21793-1
Google Scholar
[5]
Henniger, H., & Wilfert, O. (2010). An introduction to free-space optical communications. Radioengineering, 19(2), 203-212.
Google Scholar
[6]
Layioye, O. A. (2022). The Impact of Visibility Range and Atmospheric Turbulence on Free Space Optical Link Performance in South Africa (Doctoral dissertation, University of KwaZulu-Natal).
Google Scholar
[7]
Ijaz, M. (2013). Experimental characterisation and modelling of atmospheric fog and turbulence in FSO. University of Northumbria at Newcastle (United Kingdom).
Google Scholar
[8]
Manor, H., & Arnon, S. (2003). Performance of an optical wireless communication system as a function of wavelength. Applied Optics, 42(21), 4285-4294.
DOI: 10.1364/ao.42.004285
Google Scholar
[9]
Lee, I. E., Ghassemlooy, Z., Ng, W. P., Khalighi, M.-A., & Liaw, S.-K. (2021). Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors.
DOI: 10.1364/ao.55.000001
Google Scholar
[10]
Pesek, J., Fiser, O., Svoboda, J., & Schejbal, V. (2010). Modeling of 830 nm FSO link attenuation in fog or wind turbulence. Radioengineering, 19(2), 237-242.
Google Scholar
[11]
Perez, J., Zvanovec, S., Ghassemlooy, Z., & Popoola, W. O. (2014). Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network. Optics Express, 22(3), 3208-3218.
DOI: 10.1364/oe.22.003208
Google Scholar
[12]
Zhang, G., Wu, J., Li, Y., Wang, X., Yu, X., Gao, S., & Ma, L. (2023). A review of variable-beam divergence angle FSO communication systems. Photonics, 10(7), 756.
DOI: 10.3390/photonics10070756
Google Scholar
[13]
Parikh, J., & Jain, V. K. (2011). Study on statistical models of atmospheric channel for FSO communication link. Proceedings of the International Conference on Current Trends in Technology (NUiCONE-2011), Ahmedabad, India.
DOI: 10.1109/nuicone.2011.6153263
Google Scholar
[14]
Hulea, M., Ghassemlooy, Z., Rajbhandari, S., & Tang, X. (2014). Compensating for optical beam scattering and wandering in FSO communications. Journal of Lightwave Technology, 32(7), 1323– 1328.
DOI: 10.1109/jlt.2014.2304182
Google Scholar