[1]
R.K. Apalowo, M.A. Abas, F. Che Ani, M.A.F. Mukhtar, M.R. Ramli, Thermal fatigue life prediction and intermetallic compound behaviour of SAC305 BGA solder joints subject to accelerated thermal cycling test, Soldering and Surface Mount Technology 36 (2024) 154–164.
DOI: 10.1108/ssmt-12-2023-0075
Google Scholar
[2]
R.K. Apalowo, M.A. Abas, M.A.F. Muhamed Mukhtar, F. Che Ani, M.R. Ramli, Numerical investigation of thermal fatigue crack growth behavior in SAC305 BGA solder joints, Soldering and Surface Mount Technology 36 (2024) 101–110.
DOI: 10.1108/ssmt-08-2023-0049
Google Scholar
[3]
R.K. Apalowo, A. Abas, M.R. Salim, M.F. Mohd Sharif, C.S. Kok, Investigating the impacts of heat sink design parameters on heat dissipation performance of semiconductor packages, International Journal of Thermal Sciences 208 (2025) 109490.
DOI: 10.1016/J.IJTHERMALSCI.2024.109490
Google Scholar
[4]
A.R. Dhumal, A.P. Kulkarni, N.H. Ambhore, A comprehensive review on thermal management of electronic devices, Journal of Engineering and Applied Science 70 (2023) 1–18.
Google Scholar
[5]
R.K. Apalowo, M.A. Abas, M.A.F.M. Mukhtar, M.R. Ramli, Investigation of the Impacts of Solder Alloy Composition and Temperature Profile on Fatigue Life of Ball Grid Array Solder Joints Under Accelerated Thermal Cycling, J Electron Packag 147 (2025).
DOI: 10.1115/1.4065805
Google Scholar
[6]
R.K. Apalowo, M.A. Abas, Z. Bachok, M.F.M. Sharif, F. Che Ani, M.R. Ramli, M.A.F. bin M. Mukhtar, Deformation and crack growth in multilayered ceramic capacitor during thermal reflow process: numerical and experimental investigation, Microelectronics International 41 (2024) 162–171.
DOI: 10.1108/mi-03-2023-0025
Google Scholar
[7]
K. Grochalski, W. Rukat, B. Jakubek, M. Wieczorowski, M. Słowiński, K. Sarbinowska, W. Graboń, The Influence of Geometry, Surface Texture, and Cooling Method on the Efficiency of Heat Dissipation through the Heat Sink-A Review, Materials (Basel) 16 (2023).
DOI: 10.3390/MA16155348
Google Scholar
[8]
M.A. Rahman, S.M.M. Hasnain, P. Paramasivam, A.G. Ayanie, Advancing thermal management in electronics: a review of innovative heat sink designs and optimization techniques, RSC Adv 14 (2024) 31291–31319.
DOI: 10.1039/D4RA05845C
Google Scholar
[9]
D.S. Khudhur, R.C. Al-Zuhairy, M.S. Kassim, Thermal analysis of heat transfer with different fin geometry through straight plate-fin heat sinks, International Journal of Thermal Sciences 174 (2022) 107443.
DOI: 10.1016/J.IJTHERMALSCI.2021.107443
Google Scholar
[10]
Y.K. Prajapati, Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink, Int J Heat Mass Transf 137 (2019) 1041–1052.
DOI: 10.1016/J.IJHEATMASSTRANSFER.2019.04.012
Google Scholar
[11]
P. Bhandari, Y.K. Prajapati, Thermal performance of open microchannel heat sink with variable pin fin height, International Journal of Thermal Sciences 159 (2021) 106609.
DOI: 10.1016/J.IJTHERMALSCI.2020.106609
Google Scholar
[12]
E. Rahmani, T. Moradi, A. Fattahi, M. Delpisheh, N. Karimi, F. Ommi, Z. Saboohi, Numerical simulation of a solar air heater equipped with wavy and raccoon-shaped fins: The effect of fins' height, Sustainable Energy Technologies and Assessments 45 (2021) 101227.
DOI: 10.1016/J.SETA.2021.101227
Google Scholar
[13]
Y. Joo, S.J. Kim, Comparison of thermal performance between plate-fin and pin-fin heat sinks in natural convection, Int J Heat Mass Transf 83 (2015) 345–356.
DOI: 10.1016/J.IJHEATMASSTRANSFER.2014.12.023
Google Scholar
[14]
Z.S. Abdel-Rehim, Optimization and Thermal Performance Assessment of Pin-Fin Heat Sinks, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31 (2008) 51–65.
DOI: 10.1080/15567030701468118
Google Scholar
[15]
A. Atia, S. Bouabdallah, B. Ghernaout, M. Teggar, M. Arıcı, Natural convection heat transfer in a three-dimensional enclosure under the effect of heated pin-fins of various shapes, Numeri Heat Transf A Appl (2024).
DOI: 10.1080/10407782.2023.2242580
Google Scholar
[16]
C.H. Huang, W.Y. Chen, A natural convection horizontal straight-fin heat sink design problem to enhance heat dissipation performance, International Journal of Thermal Sciences 176 (2022) 107540.
DOI: 10.1016/J.IJTHERMALSCI.2022.107540
Google Scholar
[17]
W.H. Aldoori, The effect of fin height on forced convection heat transfer from rectangular fin array, Mater Today Proc 80 (2023) 3181–3188.
DOI: 10.1016/J.MATPR.2021.07.191
Google Scholar
[18]
M.B. Ben Hamida, M.A. Almeshaal, K. Hajlaoui, Y.A. Rothan, A three-dimensional thermal management study for cooling a square Light Edding Diode, Case Studies in Thermal Engineering 27 (2021) 101223.
DOI: 10.1016/J.CSITE.2021.101223
Google Scholar
[19]
K. Zhang, M.J. Li, F.L. Wang, Y.L. He, Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays, Int J Heat Mass Transf 152 (2020) 119315.
DOI: 10.1016/J.IJHEATMASSTRANSFER.2020.119315
Google Scholar
[20]
S. Feng, M. Shi, H. Yan, S. Sun, F. Li, T.J. Lu, Natural convection in a cross-fin heat sink, Appl Therm Eng 132 (2018) 30–37.
DOI: 10.1016/J.APPLTHERMALENG.2017.12.049
Google Scholar
[21]
S.S. Haghighi, H.R. Goshayeshi, M.R. Safaei, Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks, Int J Heat Mass Transf 125 (2018) 640–647.
DOI: 10.1016/J.IJHEATMASSTRANSFER.2018.04.122
Google Scholar
[22]
M.S. Abdul Aziz, M.Z. Abdullah, C.Y. Khor, A. Jalar, F. Che Ani, CFD modeling of pin shape effects on capillary flow during wave soldering, Int J Heat Mass Transf 72 (2014) 400–410.
DOI: 10.1016/J.IJHEATMASSTRANSFER.2014.01.037
Google Scholar
[23]
JEDEC, JESD51-4A: Thermal Test Chip Guideline (Wire Bond and Flip Chip), 2019. https://www.jedec.org/standards-documents/docs/jesd-51-4.
Google Scholar