[1]
C. Zhang, C., & J. M. Kovacs, (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712.
DOI: 10.1007/s11119-012-9274-5
Google Scholar
[2]
L., Ma, N., Hu, W., Li, W., Qin, S., Huang, Z., Wang, F., Li, & K., Yu, (2022). Using multispectral drone data to monitor maize's response to various irrigation modes. Journal of Plant Nutrition and Fertilizers, 28(4), 743–753.
Google Scholar
[3]
C., McCarthy, Y., Nyoni, D. J., Kachamba, L. B., Banda, B., Moyo, C., Chisambi, J., Banfill, & B., Hoshino, (2023). Can drones help smallholder farmers improve agriculture efficiencies and reduce food insecurity in Sub-Saharan Africa? Local perceptions from Malawi. Agriculture, 13(5), 1075.
DOI: 10.3390/agriculture13051075
Google Scholar
[4]
J. M., Peña-Barragán, J., Torres-Sánchez, A., De Castro, M., Kelly, F., López-Granados, (2013). Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images. PloS one, 8, e77151.
DOI: 10.1371/journal.pone.0077151
Google Scholar
[5]
D. C., Tsouros, S., Bibi, P. G. & Sarigiannidis, (2019). A review on UAV-based applications for precision agriculture. Information, 10(11), 349.
DOI: 10.3390/info10110349
Google Scholar
[6]
N., Zhang, (2015). Precision agriculture technology for crop farming. CRC Press.
Google Scholar
[7]
E. R., Jr, Hunt,. & C.S.T., Daughtry, (2017). What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? International Journal of Remote Sensing, 39(15–16), 5345–5376.
DOI: 10.1080/01431161.2017.1410300
Google Scholar
[8]
Z., Liu, & J., Li, (2023). Application of Unmanned Aerial Vehicles in Precision Agriculture. Agriculture, 13(7), 1375.
DOI: 10.3390/agriculture13071375
Google Scholar
[9]
R., Guebsi, S., Mami, K., Chokmani, (2024). Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones, 8(11), 686.
DOI: 10.3390/drones8110686
Google Scholar
[10]
S., Gokool, M., Mahomed, R., Kunz, A., Clulow, M., Sibanda, V., Naiken, K., Chetty, & T. Mabhaudhi, (2023). Crop Monitoring in Smallholder Farms Using Unmanned Aerial Vehicles to Facilitate Precision Agriculture Practices: A Scoping Review and Bibliometric Analysis. Sustainability, 15(4), 3557.
DOI: 10.3390/su15043557
Google Scholar
[11]
Advexure. (2024): Ranching redefined. Drones for livestock management. In Advexure, 2024. Available online at https://advexure.com/blogs/news/ranching-redefined-drones-for-livestock-management.
Google Scholar
[12]
Folio3 AgTech. (2024). How drones in farming are transforming agriculture in 2025. https://agtech.folio3.com/blogs/role-of-drones-in-farming-in-2024/.
Google Scholar
[13]
DJI ViewPoints Team. (2024). Farmers of the future: Unlocking the full potential of drones in U.S. agriculture. DJI ViewPoints. https://viewpoints.dji.com/blog/farmers-of-the-future-unlocking-the-full-potential-of-drones-in-u.s.-agriculture.
Google Scholar
[14]
I. T., Ayankojo, K. R., Thorp, A. L., Thompson, (2023). Advances in the Application of Small Unoccupied Aircraft Systems (sUAS) for High-Throughput Plant Phenotyping. Remote Sensing, 15(10), 2623.
DOI: 10.3390/rs15102623
Google Scholar
[15]
P. Malik, S., Tiwari, K., Tomar, K., Kalambkar, D., Yeole, (2024). Drone Swarm Coordination Using IoT for Large-Scale Agricultural Monitoring. International Journal of Science, Engineering and Technology, 12(6), 365. /.
DOI: 10.61463/ijset.vol.12.issue6.365
Google Scholar
[16]
Y., Alqudsi, M., Makaraci, (2025). UAV swarms: research, challenges, and future directions. Journal of Engineering and Applied. Science, 72(12).
DOI: 10.1186/s44147-025-00582-3
Google Scholar
[17]
N. G., Hareesha, K.K., Lakshmi, (2023). Solar-Powered Drone for Extended Flight Time. Tuijin Jishu/Journal of Propulsion Technology, 44(4), 1337.
DOI: 10.52783/tjjpt.v44.i4.1377
Google Scholar
[18]
A. H., Bagdadee, R., Rahman, I. A., Khan, K. K., Hossain, (2024). A Novel Method for Self-Driving Solar-Powered Drones. International Journal on Recent and Innovation Trends in Computing and Communication, 11(9), 4727–4741.
DOI: 10.17762/ijritcc.v11i9.10024
Google Scholar
[19]
Bendig, J., Bolten, A., Bareth, G. (2015). UAV-based imaging for multi-temporal, very high-resolution crop surface models to monitor crop growth variability. Photogrammetrie – Fernerkundung – Geoinformation, 2015(6), 551–562.
DOI: 10.1127/1432-8364/2013/0200
Google Scholar
[20]
B. A., Fanshuri, C., Prayogo, S., Soemarno, Prijono, N., Arfarta, (2023). The reliability of Unmanned Aerial Vehicles (UAVs) equipped with multispectral cameras for estimating chlorophyll content, plant height, canopy area, and fruit total number of Lemons (Citrus limon). Sains Tanah Journal of Soil Science and Agroclimatology, 20(2), 221–230.
DOI: 10.20961/stjssa.v20i2.72485
Google Scholar
[21]
J. G. A., Barbedo, (2019). A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses. Drones, 3(2), 40.
DOI: 10.3390/drones3020040
Google Scholar
[22]
Peña, José Manuel; Torres-Sánchez, Jorge; Castro, Ana Isabel de; Kelly, Maggi; López-Granados, Francisca (2013): Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. In PloS one 8 (10), e77151.
DOI: 10.1371/journal.pone.0077151
Google Scholar
[23]
Li, Run (2025): Complete PPK workflow for DJI enterprise drones. In Dji enterprise. Available online at https://enterprise-insights.dji.com/blog/ppk-post-processed-kinematics-workflow.
DOI: 10.61132/globe.v3i3.1065
Google Scholar
[24]
Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138–146.
DOI: 10.1890/120150
Google Scholar
[25]
Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., & Zaidi, S. M. R. (2020). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796.
DOI: 10.3390/s19173796
Google Scholar
[26]
Bendig, Juliane; Bolten, Andreas; Bareth, Georg (2013): Uav-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. In Photogrammetrie - Fernerkundung - Geoinformation 6, p.551–562.
DOI: 10.1127/1432-8364/2013/0200
Google Scholar
[27]
Matese, A., & Di Gennaro, S. F. (2018). Practical applications of a multisensor UAV platform based on multispectral, thermal and RGB high-resolution images in precision viticulture. Agriculture, 8(7), 116.
DOI: 10.3390/agriculture8070116
Google Scholar
[28]
Zhou, Jingping; Xu, Yaping; Gu, Xiaohe; Chen, Tianen; Sun, Qian; Zhang, Sen; Pan, Yuchun (2023): High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms. In Drones 7 (5), p.290.
DOI: 10.3390/drones7050290
Google Scholar
[29]
Luo, Zhenhai; Deng, Meihua; Tang, Min; Liu, Rui; Feng, Shaoyuan; Zhang, Chao; Zheng, Zhen (2025): Estimating soil profile salinity under vegetation cover based on UAV multi-source remote sensing. In Scientific reports 15 (1), p.2713.
DOI: 10.1038/s41598-024-82868-9
Google Scholar
[30]
Arakawa, T., & Kamio, S. (2023). Control Efficacy of UAV-Based Ultra-Low-Volume Application of Pesticide in Chestnut Orchards. Plants, 12(14), 2597.
DOI: 10.3390/plants12142597
Google Scholar
[31]
Zhao, X., Tanaka, R., Mandour, A. S., Shimada, K., & Hamabe, L. (2025). Remote Vital Sensing in Clinical Veterinary Medicine: A Comprehensive Review of Recent Advances, Accomplishments, Challenges, and Future Perspectives. Animals, 15(7), 1033.
DOI: 10.3390/ani15071033
Google Scholar
[32]
Hunt, E., Daughtry, C., Mirsky, S., Hively, W. (2013). Remote sensing with unmanned aircraft systems for precision agriculture applications. 131-134.
DOI: 10.1109/Argo-Geoinformatics.2013.6621894
Google Scholar