[1]
The Guardian, Mining's toxic legacy: The case of Grasberg, (2025).
Google Scholar
[2]
OECD, Environmental Performance of Mining in Emerging Economies. Paris: OECD Publishing, (2024).
Google Scholar
[3]
G. A. Blengini, E. Garbarino, F. Mathieux, and L. Mancini, Recovery of critical and other raw materials from mining waste and landfills: State of play. Luxembourg: Publications Office of the European Union, (2019).
Google Scholar
[4]
K. B. Boadu, F. Owusu-Nimo, and D. O. Appiah, Comparative environmental impacts of surface and underground mining in West Africa, Environ. Manage. Policy Rev., vol. 17, no. 2, p.112–124, (2023).
Google Scholar
[5]
K. A. Hudson-Edwards, H. E. Jamieson, and B. G. Lottermoser, "Mine wastes: Past, present, future," Elements, vol. 7, no. 6, p.375–380, (2011).
DOI: 10.2113/gselements.7.6.375
Google Scholar
[6]
A. Ademola, I. A. Oke, and R. Ajayi, Reprocessing tailings for resource recovery in Sub-Saharan mining operations, J. Sustain. Min, vol. 21, no. 3, p.45–55, (2022).
Google Scholar
[7]
P. Kinnunen and A. H. Kaksonen, Towards circular economy in mining: Opportunities and bottlenecks for tailings valorization, J. Cleaner Prod., vol. 228, p.153–160, (2019).
DOI: 10.1016/j.jclepro.2019.04.171
Google Scholar
[8]
H. J. Lee, J. L. Torres, and G. Mendez, AI-integrated waste processing in mining: A sustainability approach, Mining Technol. Rev., vol. 45, no. 1, p.89–102, (2023).
Google Scholar
[9]
S. Kumar, R. Kumar, and A. Bandopadhyay, "Innovative methodologies for the utilization of wastes from metallurgical and allied industries, Resour. Conserv. Recycl., vol. 48, no. 4, p.301–314, (2006).
DOI: 10.1016/j.resconrec.2006.03.003
Google Scholar
[10]
Y. Jia, Y. Chen, and B. Liu, Recent advances in bioremediation of heavy metals from mining sites, Environ. Sci. Pollut. Res., vol. 31, no. 1, p.22–33, (2024).
Google Scholar
[11]
B. G. Lottermoser, Mine Wastes: Characterization, Treatment, and Environmental Impacts, 3rd ed. Heidelberg: Springer, (2011).
Google Scholar
[12]
UNEP, Global Tailings Review: Environmental Governance in the Mining Sector. Nairobi: United Nations Environment Programme, (2023).
Google Scholar
[13]
C. Fernández-Llamas, J. Álvarez-Rodríguez, and J. García, Challenges in implementing EU mining waste directives: A case study approach, Environ. Sci. Policy, vol. 140, p.46–54, (2023).
Google Scholar
[14]
J. S. Adiansyah, M. Rosano, and S. Vink, Tailings management in the 21st century: Balancing economics, risk, and environmental protection, Resour. Policy, vol. 85, p.103652, (2023).
Google Scholar
[15]
M. Bwalya, F. Kamona, and T. Shindume, Integrated waste management strategies for copper tailings in Southern Africa, J. Min. Environ., vol. 15, no. 2, p.75–88, (2024).
Google Scholar
[16]
B. G. Lottermoser, Sustainable development principles for the disposal of mining and mineral processing wastes, Elements, vol. 7, no. 6, p.405–410, (2011).
Google Scholar
[17]
UNEP, Environmental and health impacts of mining. Nairobi: UNEP, (2013).
Google Scholar
[18]
D. M. Franks, R. Davis, A. J. Bebbington, et al., Tailings facility failures: An analysis of causes and consequences," Resour. Policy, vol. 70, p.101894, (2021).
Google Scholar
[19]
IPCC, Sixth Assessment Report. Geneva: Intergovernmental Panel on Climate Change, (2021).
Google Scholar
[20]
G. S. Simate, S. Ndlovu, and S. O. Bada, Review of acid mine drainage prediction and prevention: Emerging technologies and future directions, Minerals, vol. 12, no. 2, p.224, (2022).
Google Scholar
[21]
D. A. Rodríguez, J. Villaseñor, F. J. Fernández, and M. Martín, Tailings valorization through biotechnological methods: A review, Miner. Eng., vol. 164, p.106870, (2021).
Google Scholar
[22]
Y. Wang, J. Li, L. Chen, and S. Zhang, Vitrification of metallurgical slag: Progress and prospects for construction materials, Constr. Build. Mater., vol. 358, p.129524, (2023).
Google Scholar
[23]
A. Sharma and R. Singh, Application of advanced oxidation processes for treatment of cyanide-bearing effluents in mining industry: A review, J. Environ. Chem. Eng., vol. 8, no. 5, p.104101, (2020).
Google Scholar
[24]
International Atomic Energy Agency (IAEA), Radioactive Waste Management: Global Status and Trends, (2021).
Google Scholar
[25]
Y. Zhang, X. Luo, J. Zhang, and W. Li, Decarbonizing mining through electrification and hydrogen: Opportunities and challenges, Resour. Policy, vol. 78, p.102889, (2022).
Google Scholar
[26]
G. A. Blengini, P. Nuss, J. Dewulf, and V. Nita, Towards a common understanding of critical raw materials, Resour. Policy, vol. 63, p.101–110, (2019).
Google Scholar
[27]
International Energy Agency (IEA), Carbon Capture, Utilization and Storage: Technology Report. Paris: IEA, (2023).
Google Scholar
[28]
Environmental Protection Agency, Resource Conservation and Recovery Act (RCRA) and Clean Water Act (CWA) regulations on mining waste, (2020).
Google Scholar
[29]
European Commission, Directive 2006/21/EC on the Management of Waste from Extractive Industries, (2006).
Google Scholar
[30]
International Cyanide Management Institute, The International Cyanide Management Code for the Manufacture, Transport, and Use of Cyanide in the Production of Gold, (2021).
DOI: 10.1080/08827501003727022
Google Scholar
[31]
Basel Convention Secretariat, The Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal, (2019).
DOI: 10.29171/acku_td793_b37_2014
Google Scholar
[32]
Natural Resources Canada, Canada's Mining Regulations and Environmental Protection Policies, (2018).
Google Scholar
[33]
Australian Government, Environmental Protection and Biodiversity Conservation Act 1999, (2020).
Google Scholar
[34]
African Union, Africa Mining Vision. Addis Ababa: African Union, (2009).
Google Scholar
[35]
J. A. Brierley and C. L. Brierley, Biomining for sustainable metal recovery: Global developments and future directions, Miner. Eng., vol. 182, p.107597, (2022).
Google Scholar
[36]
Environment Canada, Mine effluent and tailings regulation: Post-Mount Polley review. Ottawa: Government of Canada, (2022).
Google Scholar
[37]
G. Gibson and D. Kemp, Social license, regulatory compliance and the evolving role of EIA in Australia's mining sector, Impact Assess. Proj. Apprais., vol. 41, no. 1, p.62–74, (2023).
Google Scholar
[38]
E. Acheampong, G. O. Boateng, and J. Mensah, Governance and enforcement gaps in Africa's mining regulation, Afr. Dev. Rev., vol. 36, no. 1, p.45–58, (2024).
Google Scholar
[39]
A. Ganguly, P. Mishra, and S. Rath, Responsible mineral sourcing and ESG integration: Trends and strategies, J. Cleaner Prod., vol. 384, p.135649, (2023).
Google Scholar
[40]
G. S. Simate and S. Ndlovu, Acid mine drainage: Challenges and opportunities, J. Environ. Chem. Eng., vol. 2, no. 3, p.1785–1803, (2014).
DOI: 10.1016/j.jece.2014.07.021
Google Scholar
[41]
D. Kossoff, W. E. Dubbin, M. Alfredsson, S. J. Edwards, M. G. Macklin, and K. A. Hudson-Edwards, Mine tailings dams: Characteristics, failure, environmental impacts, and remediation, Appl. Geochem., vol. 51, p.229–245, (2014).
DOI: 10.1016/j.apgeochem.2014.09.010
Google Scholar
[42]
M. Aucott, M. Chauvistre, and K. Schwab, Recycling of mining waste in construction materials, Environ. Sci. Technol., vol. 54, no. 2, p.231–245, (2020).
Google Scholar
[43]
M. Tibbett, D. O. Carter, and K. J. Wilkinson, Waste management in the mining sector: Current practices and future directions, Waste Manag. J., vol. 54, no. 2, p.45–62, (2021).
Google Scholar