Paraffin Wax Deposition and Remediation Techniques in Crude Oil System: A Review

Article Preview

Abstract:

Paraffin wax deposition is the major flow assurance issue in the oil industry. When the fluid temperature drops below the wax appearance temperature (WAT) due to the temperature differential between the cold areas and the crude oil, paraffin wax forms on the pipeline walls. Wax deposition can have very detrimental effects because it can narrow the internal diameters of pipelines and flowlines, which, if left unchecked, eventually clog these areas and force an activity to stop. However, overcoming the problems at this stage may become very expensive. This study examines the factors influencing paraffin wax deposition and discusses various methods for mitigating wax deposition on inner pipelines walls. It focuses on mechanical, thermal, chemical, bioremediation, and hybrid techniques. The benefits and limitations of each wax mitigation technique are assessed, along with the latest developments in modelling-based paraffin wax deposition mitigation. Although chemical techniques are preferable for treating deep-water wells due to their relatively inexpensiveness, simplicity, and no disruption to production, synthetic chemical inhibitors pose environmental hazardous. However, the advantages of organic chemical additives and bioremediation technique over commercially available synthetic chemical inhibitors are rigorously assessed in this work with regard to environmental benefits, sustainability advantages and improved process safety. This review also identifies the gaps in mitigation of paraffin wax deposition.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 33)

Pages:

41-64

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Stewart, A. M., 1999. Surface production operations. Elsevier.

Google Scholar

[2] Hilbert, J., 2010. Flow assurance: wax deposition and gelling in subsea oil pipelines. Paper presented at the SPE Asia pacific oil and gas conference and exhibition. Brisbane, Queensland, Australia

DOI: 10.2118/133948-MS

Google Scholar

[3] Surya, T. T., & Chukwuemeka, C. O., 2016. Mitigation of Wax in Oil Pipelines. International Journal of Engineering Research and Reviews. Www.Researchpublish.com.

Google Scholar

[4] Zhu, T., Walker, J. A., & Liang, J., 2008. Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils. Alaska.

DOI: 10.2172/963363

Google Scholar

[5] Aiyejina, A., Chakrabarti, D., & Sastry, M. (2011). Wax formation in oil pipelines: A critical review. International Journal of Multiphase Flow, 37, 671-694.

DOI: 10.1016/j.ijmultiphaseflow.2011.02.007

Google Scholar

[6] Theyab, M., 2017. Study of Fluid Flow Assurance in Hydrocarbon Production-Investigation Wax Mechanisms.

Google Scholar

[7] Theyab, M. A., 2018. Wax Deposition process: mechanisms, affecting factors and mitigation methods. J Sci. 2(2)

DOI: 10.15406/oajs.2018.02.00054

Google Scholar

[8] Ribbeiro, F., Mendes, P., & Braga, S., 1997. Obstruction of pipelines due to paraffin deposition during the flow of crude oils. . Int. J. Heat transfer.

DOI: 10.1016/s0017-9310(97)00082-3

Google Scholar

[9] Lee, H., 2008. Computational and rheological study of wax deposition and gelation in subsea pipelines. University of Michigan.

Google Scholar

[10] Singalong, H., Sarah, G., & Pundeer, G, 1991. Designing and selecting wax crystal modifier for optimum field performance based on crude oil composition. 66th Annual Technical Conference and Exhibition. Dallas, Texas, USA.

DOI: 10.2523/22784-ms

Google Scholar

[11] Ibrahim, E., Basement, E., Norida, R., & Norway, a. A., 2020. A Review on the wax deposition issue and it's impact on the operational in the crude oil pipeline.

Google Scholar

[12] Theyab, M., 2020. A Review of Wax Mitigation Methods through Hydrocarbon Production. J Pet Environ Biotechnol., 9, 412.

Google Scholar

[13] Kasumu, A., 2014. An investigation of solid deposition from two-phase wax-solvent-water mixtures. University of Calgary.

Google Scholar

[14] Mansoori, A., 2009. Paraffin / Wax and Waxy Crude Oil: The Role of Temperature on Heavy Organics Deposition from Petroleum Fluids.

Google Scholar

[15] Singh, P., Youven, A., & Fogler, S. H., 2001. Existence of a Critical Carbon Number in the Aging of a Wax-Oil Gel. AlChE Journal, 47(9), 2111–2124.

DOI: 10.1002/aic.690470921

Google Scholar

[16] Gomez, S., Merino-Garcia, D., & Duenas-Diez, M., 2013. Risk assessment methodology for flow assurance challenges: The sooner you look at it ,the better. Offshore Technology Conference Paper, (p.22404.).

DOI: 10.4043/24404-ms

Google Scholar

[17] Valinejad, R., & Solaimany, N. A., 2013. Experimental design approach for investigating the effects of operating on factors on wax deposition in pipelines. Fuel Journal.

DOI: 10.1016/j.fuel.2012.11.080

Google Scholar

[18] Wang, W., Huang, Q., & Liu, Y., 2015. Experimental Study on Mechanisms of Wax Removal during Pipeline Pigging. SPE Annual Technical Conference and Exhibition. Houston, Texas, USA.

DOI: 10.2118/174827-ms

Google Scholar

[19] Dobbs, J., 1999. A Unique Method of Paraffin Control in Production Operations. SPE Rocky Mountain Regional Meeting.

DOI: 10.2118/55647-ms

Google Scholar

[20] Kelechukwu, E., Salim, A. H., & Yassin, A., 2010. Influencing factors governing paraffin wax deposition during crude production. International Journal of Physical Sciences.

Google Scholar

[21] Mahto, V., & Kumar, A., 2013. Effect of several parameters on wax deposition in flow line due to Indian Waxy Crude oil. Int.J. Appl Eng Res Dev.

Google Scholar

[22] Leontaritis, K. J., 2007. Wax Flow Assurance Issues in Gas Condensate Multiphase Flowlines. Paper presented at the Offshore Technology Conference.

DOI: 10.4043/18790-ms

Google Scholar

[23] Ahmed, I. M. ( 2018). Modeling and development of insulation materials in subsea pipelines. Memorial University of Newfoundland.

Google Scholar

[24] Creek, J., Lund, H. J., Brill, J. P., & Volk, M., 1999. Wax deposition in single phase flow. Fluid Phase Equilibria, 158, 801-811.

DOI: 10.1016/s0378-3812(99)00106-5

Google Scholar

[25] Liu, H., Duan, J., Li, J., Wang, J., Yan, H., Lin, K., et al., 2023. Wax deposition modeling in oil-water stratified pipe flow. Petrol. Sci., 20, 526–539.

DOI: 10.1016/j.petsci.2022.09.028

Google Scholar

[26] Chen, Y., Jing, J., Sun, J., Wang, K., & Wang, S., 2024. Progress and perspectives of wax deposition in oil-gas systems: A review. Chem. Eng. Res. Des., 208 , 348–358.

DOI: 10.1016/j.cherd.2024.06.033

Google Scholar

[27] Kristine, A., 2012. Pour point depressant development through experimental design. University of Stavanger, Norway.

Google Scholar

[28] Junyi, K., & Hasan, N., 2018. Review of factors that influence the conditions of wax deposition in subsea pipelines.

Google Scholar

[29] Tiwary, R., & Mehrotra, A., 2008. Deposition from wax-solvent mixtures under turbulent flow: effects of shear rate and time on deposit properties. Energy & Fue.

DOI: 10.1021/ef800591p

Google Scholar

[30] Eskin, D., Ratulowski, J., & Akbarzadeh, K., 2013. A model of wax deposit layer formation. Chem. Eng. Sci., 97, 311–319.

DOI: 10.1016/j.ces.2013.04.040

Google Scholar

[31] Adeyanju, O., & Oyekunle, L. (2019). Experimental study of water-in-oil emulsion flow on wax deposition in subsea pipelines. J. Petrol. Sci. Eng, 182, 106294.

DOI: 10.1016/j.petrol.2019.106294

Google Scholar

[32] Li, S., Huang, Q., Zhao, D., & Lv, Z., 2018. Relation of heat and mass transfer in wax diffusion in an emulsion of water and waxy crude oil under static condition. Exp. Therm. Fluid Sci., 99, 1–12.

DOI: 10.1016/j.expthermflusci.2018.07.026

Google Scholar

[33] Fan, K., Li, S., & Li, R., 2021. Development of wax molecular diffusivity correlation suitable for crude oil in wax deposition: Experiments with a cold-finger apparatus. J. Petrol. Sci. Eng., 205, 108851.

DOI: 10.1016/j.petrol.2021.108851

Google Scholar

[34] Sousa, A., Matos, H., & Guerreiro, L., 2020. Wax deposition mechanisms and the effect of emulsions and carbon dioxide injection on wax deposition: Critical review. Petroleum, 6, 215–225.

DOI: 10.1016/j.petlm.2019.09.004

Google Scholar

[35] Xie, Y., Meng, J., & Chen, D., 2022. Wax deposition law and OLGA-Based prediction method for multiphase flow in submarine pipelines. Petroleum, 8, 110–117.

DOI: 10.1016/j.petlm.2021.03.004

Google Scholar

[36] Liu, Z., Li, Y., Wang, W., Song, G., Lu, Z., & Ning, Y., 2020. Wax and wax–hydrate deposition characteristics in single-, two-, and three-phase pipelines: A review. Energy Fuels, 34, 13350–13368.

DOI: 10.1021/acs.energyfuels.0c02749

Google Scholar

[37] Wen, J., & Luo, H., 2022. A viscosity prediction model for oil-water mixtures based on quantitative analysis of energy and crude oil properties. Acta Petrolei Sinica (Petrol. Process. Sect.), 38, 348–356.

Google Scholar

[38] Bimuratkyzy, K., & Sagindykov, B., 2016. Production System Design and Strategies to Mitigate Wax and Asphaltene Deposition. Int Sci Res J.

DOI: 10.21506/j.ponte.2016.2.10

Google Scholar

[39] White, M., Pierce, K., & Acharya, T., 2017. A Review of Wax-Formation/Mitigation Technologies in the Petroleum Industry. SPE Production & Operations.

DOI: 10.2118/189447-pa

Google Scholar

[40] Allen, T., & Roberts. (1982). Petroleum Operations ( 2nd ed. ed., Vol. vol. 2.). Tulsa, Oklohoma, USA.

Google Scholar

[41] Lenes, A., Lervik, J. K., Kulbotten, H., Nysveen, A., & Bornes, A. H., 2005. Hydrate Prevention on Long Pipelines by Direct Electrical Heating. ISOPE, pp. JSC-413.

Google Scholar

[42] Nysveen, A., Kulbotten, H., Lervik, J., Børnes, A., Høyer-Hansen, M., & Bremnes, J., 2007. Direct Electrical Heating of Subsea Pipelines—Technology Development and Operating Experience. IEEE Transactions On Industry Applications, vol. 43.

DOI: 10.1109/tia.2006.886425

Google Scholar

[43] Akpabio, M. G. ( 2013). Cold Flow in Long-distance,Trondheim.

Google Scholar

[44] Nguyen, D., Fogler, H., & Chavadej, S., 2001. Fused Chemical Reactions.

Google Scholar

[45] Jie, Z., Kun, H., Pengyu, Z., Yihua, D., Boli, Y., & Cheng, B., 2025. Study on hydrodynamic dual acoustic wax prevention based on arbitrary Lagrangian-Eulerian fluid-solid coupling methods.

DOI: 10.1080/10916466.2025.2471904

Google Scholar

[46] Gao, Q. H., Qing, Y., Qing, L., Wenpeng, L., Yuejiu, L., Kun, W., et al., 2024. Modeling wax deposit removal during pigging with foam pigs. Geoenergy Science and Engineering, 235.

DOI: 10.1016/j.geoen.2024.212713

Google Scholar

[47] Oil Recovery Process Inst Jianghan Petroleum Administration, (2005)

Google Scholar

[48] Kang, P., DG, L., & Lim, J., 2014. Status of Wax Mitigation Technologies in Offshore Oil Production. International Society of Offshore and Polar Engineers Conference. Busan, Korea.

Google Scholar

[49] Ferworn, K., Hammami, A., & Ellis, H., 1997. Control of Wax Deposition: An Experimental Investigation of Crystal Morphology and an Evaluation of Various Chemical Solvents. International Symposium of Oilfield Chemistry.

DOI: 10.2118/37240-ms

Google Scholar

[50] Al-Yaari, M. ( 2011). Paraffin Wax Deposition: Mittigation and Removal Techniques. . Society of Petroleum Engineers.

Google Scholar

[51] Ridzuan, N., Adam, F., & Yaacob, Z., 2014. Molecular recognition of wax inhibitor through pour point depressant type inhibitor. international petroleum technology conference. Kuala Lumpur, Malaysia

DOI: 10.2523/iptc-17883-ms

Google Scholar

[52] Anisuzzaman SM, Abang S, Bono A, Krishnaiah D, Karali R, Safuan MK, 2017. Wax inhibitor based on ethylene vinyl acetate with methyl methacrylate and diethanolamine for crude oil pipeline. IOP Conf Ser Mater Sci Eng 206

DOI: 10.1088/1757-899x/206/1/012074

Google Scholar

[53] Shikun, T., Yuemeng, R., Yanxin, J., Kele, Y., Jianbo, Z. c., & Zhiyuan, W., 2024. Investigation of synergistic inhibition effect of hydrate inhibitors and paraffin inhibitors on hydrate formation. Fuel, 385(134105)

DOI: 10.1016/j.fuel.2024.134105

Google Scholar

[54] Kojima, S., Zhang, L., Kumar, C., & al., 2024. The effects of polyethylene glycol on the nucleation and growth of DNA-functionalized gold nanoparticles crystals. . J Cryst Growth, 640(127740).

DOI: 10.1016/j.jcrysgro.2024.127740

Google Scholar

[55] Guo, X., Wei, K., Ni, T., & al., 2024. Preparation and performance analysis of polyethylene glycol/epoxy resin composite phase change material. J Energy Storage, 88(111525).

DOI: 10.1016/j.est.2024.111525

Google Scholar

[56] Tang, J., Liu, S., & Liu, W. E., 2023. Comparative study on tribological performance and mechanism of eco-friendly solvent-free covalent MXene nanofluids in glycerin and polyethylene glycol. Tribol Int, 190(109051.).

DOI: 10.1016/j.triboint.2023.109051

Google Scholar

[57] Zhao, X., Li, P., & Mo, F. e., 2024. Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid. RSC Adv, 14, 11027–11036.

DOI: 10.1039/d4ra00757c

Google Scholar

[58] Sarac, B., Wordsworth, M., & Schmucker, R., 2024. Polyethylene Glycol Fusion and Nerve Repair Success: Practical Applications. J Hand Surg Glob Online

DOI: 10.1016/j.jhsg.2024.01.016

Google Scholar

[59] Wyclif, K., Ji-Xiang, G., Rui-Ying, X., & Chen-Hao, G., 2025. Molecular Dynamics insights into Wax Formation—How polymeric inhibitors Shape Crude Oil Flow. Petroleum Science

DOI: 10.1016/j.petsci.2025.03.001

Google Scholar

[60] AA, R., MA, S., Fathy, Y., & Hamza, B. ( 2025). Synthesis, evaluation and characterization of vinyl acetate/octadecyl acrylate copolymer as an energy-saving liquid pour point depressant for waxy crude oil. Journal of Molecular Liquids, 420(126835).

DOI: 10.1016/j.molliq.2024.126835

Google Scholar

[61] Akinyemi, O., Udonne, J., & Oyedeko, K. (2018). Study of efects of blend of plant seed oils on wax deposition tendencies of Nigerian waxy crude oil. J Petrol Sci Eng, 161, 551–558

DOI: 10.1016/j.petrol.2017.12.017

Google Scholar

[62] Thevaruban, R., Colin, D. W., & Hazlina, H., 2021. The infuence of palm oil additives on the pour point and wax deposition tendencies of Chenor crude oil. Journal of Petroleum Exploration and Production Technology.

DOI: 10.1007/s13202-021-01316-w

Google Scholar

[63] Ragunathan, T., Husin, H., & Wood, C., 2020a. Efects of crude palm oil and crude palm kernel oil upon wax inhibition. ACS Omega, 5(31), 19342–19349

DOI: 10.1021/acsomega.0c00753

Google Scholar

[64] Amni, H. A., Hazlina, H., Syaza, I., Akhmal, S., & Lim, M., 2022. Investigation on wax deposition reduction using natural plant-based additives for sustainable energy production from Penara oilfield Malaysia basin. ACS omega., 7 (35), 30730-30745

DOI: 10.1021/acsomega.2c01333

Google Scholar

[65] Nazliah, B. S., Mysara, E. M., Abdullah, A., & Mohammed, A., 2025. Improving paraffin precipitate inhibition using glycine and Palm-based Methyl Ester Sulfonate (MES) eco-friendly inhibitor. Ayoub PloS one , 20(1).

DOI: 10.1371/journal.pone.0313394

Google Scholar

[66] Ali, R. S., Navvab, S., Yavar, K., Masoud, B., & Roha, K. K. (2018). Assessing the biological inhibitors effect on crude oil wax appearance temperature reduction. Journal of Petroleum Science and Technology, 8 (2), 70-.

Google Scholar

[67] Flor, Y. R.-B., Jesus, G. P.-C., Juan, M. H.-R., Arlethe, Y. A.-V., & Nasser, M.-N., 2025. Effect of 3D Printing Parameters on the Viscoelastic Behavior of Acrylonitrile Butadiene Styrene: Fractional Calculus Modeling and Statistical Optimization. Polymers, 17(12), 1650.

DOI: 10.3390/polym17121650

Google Scholar

[68] Schneiker, S., Santos, V., Bartels, D., Bekel, T., Brecht, M., Buhrmester, J., et al., 2006. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. . Nat. Biotechnol., 24, 997–1004.

DOI: 10.1038/nbt1232

Google Scholar

[69] Nekouei, F., & Nekouei, S., 2017. Enhanced enzymatic and: Ex situ biodegradation of petroleum hydrocarbons in solutions using Alcanivorax borkumensis enzymes in the presence of nitrogen and phosphorus co-doped reduced graphene oxide as a bacterial growth enhancer. J. Mater. Chem. A Mater., 5, 24462–24471.

DOI: 10.1039/c7ta05225a

Google Scholar

[70] Throne-Holst, M., Wentzel, A., Ellingsen, T., Kotlar, H., & Zotchev, S., 2007. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl. Environ. Microbiol., 73, 3327–3332.

DOI: 10.1128/aem.00064-07

Google Scholar

[71] Okoye, A., Chikere, C., & Okpokwasili, G., 2019. Characterization of potential paraffin wax removing bacteria for sustainable biotechnological application. SPE Nigeria Annual International Conference and Exhibition.

DOI: 10.2118/198799-ms

Google Scholar

[72] Nur, A. A., Suriana, S., Malihe, M., Mohd, S. M., & Raja, N. Z., 2020. Frontiers in Microbiology, 11(565608).

Google Scholar

[73] Bo Wang, Y. C., Rui, M., Qiushi, Z., & Weiqiang, W., 2024. Study on optimized culture of microbial strains and their ability in wax removal and viscosity reduction of paraffin-based crude oil. Fuel, 369(131697).

DOI: 10.1016/j.fuel.2024.131697

Google Scholar

[74] Hind, A. G., Nermen, H. M., Dina, M. A.-A., Mahmoud, S., Gehad, G. M., & Ahmad, K. H., 2024. Promising Egyptian soil bacterial isolates for hydrocarbon waste biodegradation: petroleum wax. Egyptian Journal of Chemistry, 67(5), 385-394.

DOI: 10.21608/ejchem.2023.227936.8392

Google Scholar

[75] Shazleen, S., Raja, N. Z., Nor, H. A., Sara, S., Siti, R. M., Norhidayah, A. W., et al., 2024. Novel Approach of Tackling Wax Deposition Problems in Pipeline Using Enzymatic Degradation Process: Challenges and Potential Solutions. Processes, 12(10).

DOI: 10.3390/pr12102074

Google Scholar

[76] Dolly, D. P., & Lakshmi, B., 2018. Study on paraffin wax degrading ability of Pseudomonas nitroreducens isolated from oil wells of Gujarat, India. Petroleum Science and Technology , 36(8), 583-590.

DOI: 10.1080/10916466.2018.1437634

Google Scholar

[77] Nitu, S., & Banwari, L., 2008. Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSuM for application in oil wells with paraffin …. Chemosphere, 70(8), 1445-1451.

DOI: 10.1016/j.chemosphere.2007.08.071

Google Scholar

[78] Chao, L., Weiqiang, W., Haijuan, Z., Xin, Y., & Guofu, W., 2019. Microbial treatment of waxy crude oil for mitigating wax precipitation and improving liquidity. Petroleum Science and Technology, 37(4), 471-478.

DOI: 10.1080/10916466.2018.1552968

Google Scholar

[79] Filippo, L., 2015. Unconventional methods offer wax remediation options. Offshore.

Google Scholar

[80] Zhenyu Huang, Sheng Zheng, H. Scott Fogler (2015). applying wax deposition models to flow loop experiments. Wax deposition, CRC Press, 9780429099410

DOI: 10.1201/b18482-10

Google Scholar

[81] Rafael, F. C., Julio, C. S., Luiz, A. D., Diego, C. E., Evaldiney, R. M., & Wellington, B. D., 2025. Simulating Paraffin Wax Deposit Removal: A Numerical Study of SGN Application. Journal of Applied and Computational Mechanics, 11(1), 134-142.

Google Scholar

[82] Hovden, L, Labes-Carrier, C A. Rydahl, H. Ronningsen, and Z. Xu, 2003. Pipeline wax deposition models and model for removal of wax by pigging: Comparison between model predictions and operational experience. in Abstracts of Papers of the American Chemical Society, vol.225. Amer Chemical Soc 1155 16th St, Nw, Washington, DC 20036 USA, 2003, pp. U936–U936.

Google Scholar

[83] Weingarten, J. E., 1988. Methods for Prediction Wax Precipitation and Deposition. SPE Production Engineering, 3.

Google Scholar

[84] Mohammadali, A., 2022. Data-driven approaches for predicting wax deposition. Energy, 265

DOI: 10.1016/j.energy.2022.126296

Google Scholar

[85] Gabriel, S., Nagu, D., & Cem, S., 2024. Modeling wax deposition in pipes: Developing a closure relationship for improving the prediction accuracy. Geoenergy Science and Engineering, , 236.(58)

DOI: 10.1016/j.geoen.2024.212751

Google Scholar

[86] Ehsan, V. A., Mehdi, A., & Farzaneh, N., 2021. An effective procedure for wax formation modelling using multi-solid approach and PC-SAFT EOS for petroleum fluids with PNA characterization. Journal of Petroleum Science and Engineering, 207

DOI: 10.1016/j.petrol.2021.109103

Google Scholar

[87] Fatima, A. M., Ahmed, A. E., & Altejani, A. H., 2022. Flow assurance, simulation of wax deposition for Rawat field using PIPSIM software. World Journal of Advanced Engineering Technology and Sciences

DOI: 10.30574/wjaets.2022.7.1.0093

Google Scholar

[88] Maryam, M. K., Ali, S., Taira, B., & Munziya, A., 2025. New intelligent models for predicting wax appearance temperature using experimental data-Flow assurance implications. Fuel, 380

DOI: 10.1016/j.fuel.2024.133146

Google Scholar

[89] Won., 1986. Thermodynamics for solid solution-liquid-vapor equilibria: wax phase formation from heavy hydrocarbon mixtures, Fluid Phase Equil. 30 , 265-279.

DOI: 10.1016/0378-3812(86)80061-9

Google Scholar

[90] Bagherinia, R., Assareh, M., & Feyzi, F., 2016. An improved thermodynamic model for Wax precipitation using a UNIQUAC+ PC-SAFT approach. Fluid Phase Equil., 425, 21-30.

DOI: 10.1016/j.fluid.2016.05.008

Google Scholar

[91] Mashhadi, M. H., Ghotbi, C., Jafar, T., Behbahani, I., & Sharifi, K., 2018. A new investigation of wax precipitation in Iranian crude oils: experimental method based on FTIR spectroscopy and theoretical predictions using PC-SAFT mode. J. Mol. Liq., 249, 970-979.

DOI: 10.1016/j.molliq.2017.11.110

Google Scholar

[92] Shengnan, Z., Di, F., Jing, G., & Wei, W., 2023. Simulation Studies of Wax Deposition in Oil-Gas Inclined Shafte. Chemistry and Technology of Fuels and Oils, 59(5), 1097-1105.

DOI: 10.1007/s10553-023-01622-5

Google Scholar

[93] Haibo, D., Junhao, L., Bo, S., Zonghao, Y., & Yanjun, Q., 2024. Effects of bitumen component on wax crystallization characteristic by the thermodynamic model. Materials & Design, 245(113229).

DOI: 10.1016/j.matdes.2024.113229

Google Scholar

[94] Bingfan, L., Ziyuan, G., Liming, Z., Erxiu, S., & Bo, Q., 2024. A comprehensive review of wax deposition in crude oil systems: Mechanisms, influencing factors, prediction and inhibition techniques. Fuel, 357(1 2024)

DOI: 10.1016/j.fuel.2023.129676

Google Scholar

[95] Kosta J. Leontaritis & Efstratios Geroulis, 2011. wax deposition correlation-application in multiphase wax deposition models. OnePetro

DOI: 10.4043/21623-MS

Google Scholar