[1]
R.K. Apalowo, A. Abas, M.R. Salim, M.F. Mohd Sharif, C.S. Kok, Investigating the impacts of heat sink design parameters on heat dissipation performance of semiconductor packages, International Journal of Thermal Sciences 208 (2025) 109490.
DOI: 10.1016/J.IJTHERMALSCI.2024.109490
Google Scholar
[2]
M. Hepisuthar, D. Priyankasharma, Comparative Analysis Study on SSD, HDD, and SSHD, Turkish Journal of Computer and Mathematics Education 12 (2021) 3635–3641.
DOI: 10.17762/TURCOMAT.V12I3.1644
Google Scholar
[3]
R.K. Apalowo, M.A. Abas, F. Che Ani, M.A.F. Mukhtar, M.R. Ramli, Thermal fatigue life prediction and intermetallic compound behaviour of SAC305 BGA solder joints subject to accelerated thermal cycling test, Soldering and Surface Mount Technology 36 (2024) 154–164.
DOI: 10.1108/ssmt-12-2023-0075
Google Scholar
[4]
R.K. Apalowo, M.A. Abas, M.A.F. Muhamed Mukhtar, F. Che Ani, M.R. Ramli, Numerical investigation of thermal fatigue crack growth behavior in SAC305 BGA solder joints, Soldering and Surface Mount Technology 36 (2024) 101–110.
DOI: 10.1108/ssmt-08-2023-0049
Google Scholar
[5]
N. Wang, B. Tian, Z. Wei, Y. Guo, Z. Dong, D. Ding, S. Shao, Experimental study of a dual-loop cooling system for data centers: A combined active and passive cooling approach, Energy 333 (2025) 137478.
DOI: 10.1016/J.ENERGY.2025.137478
Google Scholar
[6]
A. Dixit, R. Maithani, S. Sharma, Enhancing electronic system cooling: exploring minichannel heat sink solutions, Journal of Thermal Analysis and Calorimetry 2025 150:7 150 (2025) 5357–5407.
DOI: 10.1007/S10973-025-14118-7
Google Scholar
[7]
R.K. Apalowo, M.A. Abas, M.A.F.M. Mukhtar, M.R. Ramli, Investigation of the Impacts of Solder Alloy Composition and Temperature Profile on Fatigue Life of Ball Grid Array Solder Joints Under Accelerated Thermal Cycling, J Electron Packag 147 (2025).
DOI: 10.1115/1.4065805
Google Scholar
[8]
Y. Joo, S.J. Kim, Comparison of thermal performance between plate-fin and pin-fin heat sinks in natural convection, Int J Heat Mass Transf 83 (2015) 345–356.
DOI: 10.1016/J.IJHEATMASSTRANSFER.2014.12.023
Google Scholar
[9]
M. Mokhtari, M. Barzegar Gerdroodbary, R. Yeganeh, K. Fallah, Numerical study of mixed convection heat transfer of various fin arrangements in a horizontal channel, Engineering Science and Technology, an International Journal 20 (2017) 1106–1114.
DOI: 10.1016/J.JESTCH.2016.12.007
Google Scholar
[10]
U. V. Awasarmol, A.T. Pise, An experimental investigation of natural convection heat transfer enhancement from perforated rectangular fins array at different inclinations, Exp Therm Fluid Sci 68 (2015) 145–154.
DOI: 10.1016/J.EXPTHERMFLUSCI.2015.04.008
Google Scholar
[11]
K. Zhang, M.J. Li, F.L. Wang, Y.L. He, Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays, Int J Heat Mass Transf 152 (2020) 119315.
DOI: 10.1016/J.IJHEATMASSTRANSFER.2020.119315
Google Scholar
[12]
S. Meganathan, R. Arunkumar, A. Ponshanmugakumar, Numerical analysis of passive heat sink for different shapes, Mater Today Proc 46 (2021) 3749–3755.
DOI: 10.1016/J.MATPR.2021.02.014
Google Scholar
[13]
M. Ekpu, R. Bhatti, N. Ekere, S. Mallik, Advanced thermal management materials for heat sinks used in microelectronics, in: 18th European Microelectronics & Packaging Conference, IEEE, Brighton, UK, 2011: p.1–8. https://ieeexplore.ieee.org/document/6142404 (accessed November 4, 2024).
Google Scholar
[14]
R.K. Apalowo, M.A. Abas, Z. Bachok, M.F.M. Sharif, F. Che Ani, M.R. Ramli, M.A.F. bin M. Mukhtar, Deformation and crack growth in multilayered ceramic capacitor during thermal reflow process: numerical and experimental investigation, Microelectronics International 41 (2024) 162–171.
DOI: 10.1108/mi-03-2023-0025
Google Scholar
[15]
T.L. Tripathy, S.K. Dash, Numerical modeling of natural convection heat transfer from radial branching heat sinks for LED cooling applications, Appl Therm Eng 242 (2024) 122446.
DOI: 10.1016/J.APPLTHERMALENG.2024.122446
Google Scholar
[16]
M.R. Salim, A. Abas, K.H. Lim, M.N. Abdullah, Performance of power dissipation on semiconductor module for different configuration of heat SINK with thermal pad, International Journal of Thermal Sciences 201 (2024).
DOI: 10.1016/j.ijthermalsci.2024.109045
Google Scholar
[17]
M. Selvan, M.S. Abdul Aziz, K.H. Yu, M.S. Nurulakmal, H.P. Ong, C.Y. Khor, A study on the effect of fin pitch variation on the thermal performance of a bus duct conductor, International Journal of Thermal Sciences 184 (2023) 107938.
DOI: 10.1016/J.IJTHERMALSCI.2022.107938
Google Scholar
[18]
A.K. Rao, V. Somkuwar, Heat transfer of a tapered fin heat sink under natural convection, Mater Today Proc 46 (2021) 7886–7891.
DOI: 10.1016/J.MATPR.2021.02.565
Google Scholar
[19]
P. Singh, A.K. Patil, Experimental investigation of heat transfer enhancement through embossed fin heat sink under natural convection, Exp Therm Fluid Sci 61 (2015) 24–33.
DOI: 10.1016/J.EXPTHERMFLUSCI.2014.10.011
Google Scholar
[20]
M. Muneeshwaran, M.K. Tsai, C.C. Wang, Heat transfer augmentation of natural convection heat sink through notched fin design, International Communications in Heat and Mass Transfer 142 (2023) 106676.
DOI: 10.1016/J.ICHEATMASSTRANSFER.2023.106676
Google Scholar
[21]
W. Li, S. Liu, K. Zhang, Y. Zhang, X. Zhang, J. Zhao, H. Dong, Experimental and numerical study on temperature control performance of phase change material heat sink, Appl Therm Eng 238 (2024) 122081.
DOI: 10.1016/J.APPLTHERMALENG.2023.122081
Google Scholar
[22]
JEDEC, JESD51-4A: Thermal Test Chip Guideline (Wire Bond and Flip Chip), 2019. https://www.jedec.org/standards-documents/docs/jesd-51-4.
Google Scholar