Optimization of Design Parameters for Efficient Heat Dissipation from Chip to Casing in High-Power Solid-State Drives

Article Preview

Abstract:

Effective thermal management is critical to the performance and reliability of solid-state drives (SSDs), especially in high-power applications where passive cooling remains the preferred solution due to space, noise, and energy constraints. This study investigates the impact of key design parameters—casing material, heat sink base thickness, and fin spacing—on heat dissipation from the chip to the casing under natural convection conditions. A three-dimensional finite volume method (FVM)-based thermal model was developed and validated experimentally, with chip and casing temperatures measured across various operating voltages. The model showed strong agreement with experimental data, with average deviations below 4%. Temperature contour analysis revealed that aluminum casings enabled more uniform heat distribution and lower thermal resistance compared to ABS, resulting in a chip temperature reduction of up to 9.28 °C. Increasing the heat sink base thickness from 1.0 mm to 3.0 mm further improved heat conduction, while fin spacing had a minor influence on performance. Taguchi optimization using chip-to-casing temperature drop as the performance metric identified the optimal configuration as an aluminum casing, 3.0 mm base thickness, and 2.4 mm fin spacing. This combination achieved the lowest chip temperature (52.18 °C) and minimal thermal resistance. The findings provide design insights for enhancing passive thermal solutions in high-power, compact SSD systems.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 33)

Pages:

145-159

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.K. Apalowo, A. Abas, M.R. Salim, M.F. Mohd Sharif, C.S. Kok, Investigating the impacts of heat sink design parameters on heat dissipation performance of semiconductor packages, International Journal of Thermal Sciences 208 (2025) 109490.

DOI: 10.1016/J.IJTHERMALSCI.2024.109490

Google Scholar

[2] M. Hepisuthar, D. Priyankasharma, Comparative Analysis Study on SSD, HDD, and SSHD, Turkish Journal of Computer and Mathematics Education 12 (2021) 3635–3641.

DOI: 10.17762/TURCOMAT.V12I3.1644

Google Scholar

[3] R.K. Apalowo, M.A. Abas, F. Che Ani, M.A.F. Mukhtar, M.R. Ramli, Thermal fatigue life prediction and intermetallic compound behaviour of SAC305 BGA solder joints subject to accelerated thermal cycling test, Soldering and Surface Mount Technology 36 (2024) 154–164.

DOI: 10.1108/ssmt-12-2023-0075

Google Scholar

[4] R.K. Apalowo, M.A. Abas, M.A.F. Muhamed Mukhtar, F. Che Ani, M.R. Ramli, Numerical investigation of thermal fatigue crack growth behavior in SAC305 BGA solder joints, Soldering and Surface Mount Technology 36 (2024) 101–110.

DOI: 10.1108/ssmt-08-2023-0049

Google Scholar

[5] N. Wang, B. Tian, Z. Wei, Y. Guo, Z. Dong, D. Ding, S. Shao, Experimental study of a dual-loop cooling system for data centers: A combined active and passive cooling approach, Energy 333 (2025) 137478.

DOI: 10.1016/J.ENERGY.2025.137478

Google Scholar

[6] A. Dixit, R. Maithani, S. Sharma, Enhancing electronic system cooling: exploring minichannel heat sink solutions, Journal of Thermal Analysis and Calorimetry 2025 150:7 150 (2025) 5357–5407.

DOI: 10.1007/S10973-025-14118-7

Google Scholar

[7] R.K. Apalowo, M.A. Abas, M.A.F.M. Mukhtar, M.R. Ramli, Investigation of the Impacts of Solder Alloy Composition and Temperature Profile on Fatigue Life of Ball Grid Array Solder Joints Under Accelerated Thermal Cycling, J Electron Packag 147 (2025).

DOI: 10.1115/1.4065805

Google Scholar

[8] Y. Joo, S.J. Kim, Comparison of thermal performance between plate-fin and pin-fin heat sinks in natural convection, Int J Heat Mass Transf 83 (2015) 345–356.

DOI: 10.1016/J.IJHEATMASSTRANSFER.2014.12.023

Google Scholar

[9] M. Mokhtari, M. Barzegar Gerdroodbary, R. Yeganeh, K. Fallah, Numerical study of mixed convection heat transfer of various fin arrangements in a horizontal channel, Engineering Science and Technology, an International Journal 20 (2017) 1106–1114.

DOI: 10.1016/J.JESTCH.2016.12.007

Google Scholar

[10] U. V. Awasarmol, A.T. Pise, An experimental investigation of natural convection heat transfer enhancement from perforated rectangular fins array at different inclinations, Exp Therm Fluid Sci 68 (2015) 145–154.

DOI: 10.1016/J.EXPTHERMFLUSCI.2015.04.008

Google Scholar

[11] K. Zhang, M.J. Li, F.L. Wang, Y.L. He, Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays, Int J Heat Mass Transf 152 (2020) 119315.

DOI: 10.1016/J.IJHEATMASSTRANSFER.2020.119315

Google Scholar

[12] S. Meganathan, R. Arunkumar, A. Ponshanmugakumar, Numerical analysis of passive heat sink for different shapes, Mater Today Proc 46 (2021) 3749–3755.

DOI: 10.1016/J.MATPR.2021.02.014

Google Scholar

[13] M. Ekpu, R. Bhatti, N. Ekere, S. Mallik, Advanced thermal management materials for heat sinks used in microelectronics, in: 18th European Microelectronics & Packaging Conference, IEEE, Brighton, UK, 2011: p.1–8. https://ieeexplore.ieee.org/document/6142404 (accessed November 4, 2024).

Google Scholar

[14] R.K. Apalowo, M.A. Abas, Z. Bachok, M.F.M. Sharif, F. Che Ani, M.R. Ramli, M.A.F. bin M. Mukhtar, Deformation and crack growth in multilayered ceramic capacitor during thermal reflow process: numerical and experimental investigation, Microelectronics International 41 (2024) 162–171.

DOI: 10.1108/mi-03-2023-0025

Google Scholar

[15] T.L. Tripathy, S.K. Dash, Numerical modeling of natural convection heat transfer from radial branching heat sinks for LED cooling applications, Appl Therm Eng 242 (2024) 122446.

DOI: 10.1016/J.APPLTHERMALENG.2024.122446

Google Scholar

[16] M.R. Salim, A. Abas, K.H. Lim, M.N. Abdullah, Performance of power dissipation on semiconductor module for different configuration of heat SINK with thermal pad, International Journal of Thermal Sciences 201 (2024).

DOI: 10.1016/j.ijthermalsci.2024.109045

Google Scholar

[17] M. Selvan, M.S. Abdul Aziz, K.H. Yu, M.S. Nurulakmal, H.P. Ong, C.Y. Khor, A study on the effect of fin pitch variation on the thermal performance of a bus duct conductor, International Journal of Thermal Sciences 184 (2023) 107938.

DOI: 10.1016/J.IJTHERMALSCI.2022.107938

Google Scholar

[18] A.K. Rao, V. Somkuwar, Heat transfer of a tapered fin heat sink under natural convection, Mater Today Proc 46 (2021) 7886–7891.

DOI: 10.1016/J.MATPR.2021.02.565

Google Scholar

[19] P. Singh, A.K. Patil, Experimental investigation of heat transfer enhancement through embossed fin heat sink under natural convection, Exp Therm Fluid Sci 61 (2015) 24–33.

DOI: 10.1016/J.EXPTHERMFLUSCI.2014.10.011

Google Scholar

[20] M. Muneeshwaran, M.K. Tsai, C.C. Wang, Heat transfer augmentation of natural convection heat sink through notched fin design, International Communications in Heat and Mass Transfer 142 (2023) 106676.

DOI: 10.1016/J.ICHEATMASSTRANSFER.2023.106676

Google Scholar

[21] W. Li, S. Liu, K. Zhang, Y. Zhang, X. Zhang, J. Zhao, H. Dong, Experimental and numerical study on temperature control performance of phase change material heat sink, Appl Therm Eng 238 (2024) 122081.

DOI: 10.1016/J.APPLTHERMALENG.2023.122081

Google Scholar

[22] JEDEC, JESD51-4A: Thermal Test Chip Guideline (Wire Bond and Flip Chip), 2019. https://www.jedec.org/standards-documents/docs/jesd-51-4.

Google Scholar