[1]
J. Chaloupka, G. Khaliullin, Orbital Order and Possible Superconductivity in Superlattices, Phys. Rev. Lett. 100 (2008) 016404.
Google Scholar
[2]
V. I. Anisimov, D. Bukhvalov, T. M. Rice, Electronic structure of possible nickelate analogs to the cuprates, Phys. Rev. B 59 (1999) 7901–7906.
DOI: 10.1103/physrevb.59.7901
Google Scholar
[3]
A. V. Boris et al., X-ray absorption spectra of the Mott insulator La2CuO4, Science 332 (2011) 937-940.
Google Scholar
[4]
S. Middey et al., Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates, Annu. Rev. Mater. Res. 46 (2016) 305-334.
DOI: 10.1146/annurev-matsci-070115-032057
Google Scholar
[5]
D. Li et al., Superconductivity in an infinite-layer nickelate, Nature 572 (2019) 624-627.
Google Scholar
[6]
Qing Li et al., Self-assembled NIR-responsive MoS2@quaternized chitosan/nanocellulose composite paper for recyclable antibacterial applications, Commun. Mater. 16 (2020) 1.
DOI: 10.2139/ssrn.4017468
Google Scholar
[7]
P. Das, Ajay Kumar Ghosh, Superfluid phase stiffness in electron doped superconducting Gd-123, Phys. C 548 (2018) 27-30.
DOI: 10.1016/j.physc.2018.01.020
Google Scholar
[8]
Payel Das, Ajay Kumar Ghosh, An Evidence of the Second Order BKT Phase Transition in Three Dimensional Underdoped RE-123 Superconductors, J. Supercond. Nov. Magn. 37 (2024) 25-30.
DOI: 10.1007/s10948-023-06647-9
Google Scholar
[9]
M.A. Hayward et al., Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterisation of the nickel (I) oxide LaNiO2 , J. Am. Chem. Soc. 121 (1999) 8843-8844.
DOI: 10.1021/ja991573i
Google Scholar
[10]
M. Osada et al., Phase diagram of infinite layer praseodymium nickelate thin films, Phys. Rev. Mater. 4 (2020) 121801.
Google Scholar
[11]
Y. Krockenberger et al., Kerr non-linearity in a superconducting Josephson metamaterial, J. Appl. Phys. 124 (2018) 073905.
Google Scholar
[12]
Z. H. Liu, A. A. Pal, et al., A phase-field study on the hysteresis behaviors and domain patterns of nanocrystalline ferroelectric polycrystals, J. Appl. Phys. 113 (2013) 104106.
DOI: 10.1063/1.4807315
Google Scholar
[13]
H. C. Liu, Z. Yang, et al., A high-performance two-dimensional p-n junction photodetector with high internal gain, Nature 586 (2020) 39-44.
Google Scholar
[14]
S. A. Tranquada, J. M. Tranquada, et al., Evidence for stripe correlations of spin and charge in a high-temperature superconductor, Science 366 (2019) 1011-1016.
Google Scholar
[15]
B. S. Fain, C. Zhang, et al., Observation of Nonreciprocal Optoelectronic Behavior in a Topological Insulator, Phys. Rev. Lett. 123 (2019) 227003.
Google Scholar
[16]
T.H. L. Ngo, S. Chen, et al., Designing high-performance perovskite nanocrystal-based photodetectors with enhanced stability and sensitivity, J. Mater. Chem. C 8 (2020) 1234-1242.
Google Scholar
[17]
N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford) (1979).
Google Scholar
[18]
A.N. Vasil'ev et al., Magnetic and transport properties of electron-doped high-Tc superconductors, Phys. B Condens. Matter 223 (1996) 243-247.
Google Scholar
[19]
A. Reyes et al., Magnetic ordering and spin fluctuations in the Fe-based superconductor LaFeAsO, Phys. Rev. B 71 (2005) 125110.
Google Scholar
[20]
M. R. Shastry et al., Magnetoresistance in manganite thin films, J. Appl. Phys. 85 (1999) 3805-3811.
Google Scholar
[21]
P. W. Anderson, The Theory of Superconductivity in High-Tc Cuprates, Science 268 (1995) 1154-1160.
Google Scholar
[22]
D. Haug et al., Directed assembly of one-dimensional nanostructures into functional networks ,Nat. Mater. 4 (2005) 447-450.
Google Scholar
[23]
J. Lee, et al., Phase-dependent heat transport in Josephson junctions with p-wave superconductors and superfluids, Phys. Rev. B 71 (2005) 184502-1 – 184502-6.
Google Scholar