Ready Mix Concrete Production Scheduling and Truck Mixer Allocation Using Genetic Algorithm: A Case Study

Article Preview

Abstract:

The XYZ company is engaged in the production of construction materials such as Ready-Mix Concrete (RMC). XYZ company must increase productivity in order to compete with the industry’s rapid expansion in Banyumas, Indonesia. Scheduling production is one of the methods for boosting productivity. Utilizing a mathematical model and a single-machine approach, scheduling is arranged. Using a product delivery system that is integrated with the production process, a production scheduling model and allocation of product delivery vehicles, the Truck Mixer, are developed. The Genetic Algorithm is used to find a more effective scheduling solution. The results of this study indicate that the schedule generated by the genetic algorithm has a total reduction of ten job sequence completion times of 134363 seconds or 24% more efficient than the existing schedule on average.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 6)

Pages:

303-311

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pinedo, M. L. Scheduling Theory Algorithms, and Systems 4th Edition. Springer New York Dordrecht Heidelberg London. 2016.

Google Scholar

[2] Syaifuddin, D. T. Riset Operasi Vol. 1. Penerbit CV Mitra Malang. 2011.

Google Scholar

[3] Abrar, H. Perencanaan Penjadwalan & Pengendalian Proyek. Penerbit Andi. 2011.

Google Scholar

[4] Baker, K. R., and Trietsch, D. Principles of Sequencing and Scheduling. In Principles of Sequencing and Scheduling. 2009.

DOI: 10.1002/9780470451793

Google Scholar

[5] Feng, C. W., Cheng, T. M. and Wu, H. T. Optimizing the Schedule of dispatching RMC trucks through genetic algorithms. Automation in Construction Vol. 13, No 3. p.327–340. 2004.

DOI: 10.1016/j.autcon.2003.10.001

Google Scholar

[6] Budhi, G. S., Sundoro, D., and Pongawa, V. Penggunaan Compact Genetic Algorithm (cGA) Untuk Optimasi Penjadwalan Pengiriman Beton ReadyMix. Proceeding Seminar Nasional Aplikasi Teknologi Informasi (SNATI) p.13–18. 2008.

Google Scholar

[7] Yan, S., Lai, W., and Chen, M. Production Scheduling and Truck Dispatching 81 of Ready Mixed Concrete. Transportation Research Part E. Logistics and Transportation Review. Vol 44. No. 1. p.164–179. 2008.

DOI: 10.1016/j.tre.2006.05.001

Google Scholar

[8] Zlobinsky, N., and Cheng, L.. SAM: A Meta-Heuristic Algorithm for Single Machine Scheduling Problems. SAIEE Africa Research Journal Vol. 109. No 1. p.58–68. 2018.

DOI: 10.23919/saiee.2018.8531800

Google Scholar

[9] González-Neira, E. M., Montoya-Torres, J. R., and Barrera, D. Flow-shop Scheduling Problem Under Uncertainties: Review and Trends. International Journal of Industrial Engineering Computations Vol. 8. No 4. p.399–426. 2017.

DOI: 10.5267/j.ijiec.2017.2.001

Google Scholar

[10] Soenandi, I. A., Marpaung, B., and Ginting, M. Optimasi Vehicle Routing Problem (VRP) dengan Pendekatan Metaheuristik (Studi Kasus Distribusi Bahan Baku Makanan). Jurnal Ilmiah Teknik Industri. Vol 2. No 2. 2017.

DOI: 10.24912/jitiuntar.v2i2.487

Google Scholar

[11] Liu, Z., Zhang, Y., and Li, M. Integrated Scheduling of Ready-Mixed Concrete Production and Delivery. Automation in Construction Vol 48. p.31–43. 2014.

DOI: 10.1016/j.autcon.2014.08.004

Google Scholar

[12] Srichandum, S. and Rujirayanyong, T. Production Scheduling for Dispatching Ready Mixed Concrete Trucks Using Bee Colony Optimization. American J. Engineering and Applied Science Vol 3. No 1. p.7–14. 2010.

DOI: 10.3844/ajeassp.2010.7.14

Google Scholar

[13] Surekha, P., and Sumathi, S., Solution to Multi-Depot Vehicle Routing Problem Using Genetic Algorithms. World Applied Programming. 2011.

Google Scholar

[14] Niebel, B., and Freivalds, A. Methods, Standard and Work Design 12th edition. The McGraw-Hill Companies, Inc. 2013.

Google Scholar

[15] Sutalaksana, I. Z. Teknik Perancangan Sistem Kerja Edisi Kedua. ITB Press, 2006.

Google Scholar

[16] Whitley, D. A Genetic Algorithm Tutorial. Statistics and Computing Vol 4. No 2. p.65–85. 1994.

Google Scholar

[17] Putra, I. M. S. Penerapan Algoritma Genetika Dan Implementasi Dalam MATLAB. Vol 53, No 9, p.1689–1699. 2018.

Google Scholar

[18] Michalewics, Z. Design by Evolution: Advances in Evolutionary Design (Natural Computing Series). Springer. 1996.

Google Scholar

[19] Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Weasley Publishing Company. 1989.

Google Scholar

[20] Sivanandam, S. N., and Deepa, S. N. Introduction to Genetic Algorithms. Springer Berlin Heidelberg. 2008.

Google Scholar

[21] Santosa, B., and Willy, P. Metoda Metaheuristik Konsep dan Implementasi 1st ed. Prima Printing. 2011.

Google Scholar

[22] Mitchell, M. An Introduction to Genetic Algorithm (Reprint). MIT Press. 1998.

Google Scholar

[23] Suyanto. Algoritma Genetika dalam MATLAB 1st ed. Andi Offset. 2005.

Google Scholar

[24] Chambers, L. Practical Handbook of Genetic Algorithms 2nd ed. CRC Press. 2000.

Google Scholar

[25] H. A. Ilhamsah, S. Amar, and N. Irfina. Perencanaan Penjadwalan Produksi Meminimasi Total Weighted Tardiness dengan Menggunakan Total Weighted Algoritma Genetika. Seminar Nasional Mesin dan Industri. Vol. 9. p.27–29. 2017.

DOI: 10.25077/josi.v18.n2.p133-141.2019

Google Scholar