[1]
Singh, O.K., 2021. Development of a solar cooking system suitable for indoor cooking and its exergy and enviroeconomic analyses. Solar Energy, 217, pp.223-234.
DOI: 10.1016/j.solener.2021.02.007
Google Scholar
[2]
Chaudhary, R., Yadav, A., 2020a. Experimental investigation of a solar cooking system inhibiting closed airtight cooking pot and evacuated tube collector for the preparation of Indian cuisine items. Environ. Dev. Sustain. https://doi.org/10.1007/ s10668-020-00711-3.
DOI: 10.1007/s10668-020-00711-3
Google Scholar
[3]
Zafar, H.A., Khan, M.Y., Badar, A.W., Tariq, R., Butt, F.S., 2018. Introducing a novel design in the realm of box type solar cookers: An experimental study. J. Renew. Sustain. Energy 10, 043707.
DOI: 10.1063/1.5037981
Google Scholar
[4]
Ahmad, R., Zhou, Y.G., Zhao, N., Pemberton-Pigott, C., Annegarn, H.J., Sultan, M.,Dong, R.J., Ju, X.X., 2019. Impacts of fuel feeding methods on the thermal and emission performance of modern coal burning stoves. Int. J. Agric. Biol. Eng. 12, 160–167.
Google Scholar
[5]
Chan, S., Sasaki, N., Ninomiya, H., 2015. Carbon emission reductions by substitution of improved cookstoves and cattle mosquito nets in a forest-dependent community. Glob. Ecol. Conserv. 4, 434–444.
DOI: 10.1016/j.gecco.2015.08.007
Google Scholar
[6]
Du, W., Shen, G.F., Chen, Y.C., Zhu, X., Zhuo, S.J., Zhong, Q.R., Qi, M., Xue, C.Y., Liu, G. Q., Zeng, E., Xing, B.S., Tao, S., 2017. Comparison of air pollutant emissions and household air quality in rural homes using improved wood and coal stoves. Atmos. Environ. 166, 215–223.
DOI: 10.1016/j.atmosenv.2017.07.029
Google Scholar
[7]
Chaichan, M.T., 2018. Combustion and emission characteristics of E85 and diesel blend in conventional diesel engine operating in PPCI mode. Thermal science and Engineering progress, 7, pp.45-53.
DOI: 10.1016/j.tsep.2018.04.013
Google Scholar
[8]
Zhao, N., Li, B., Chen, D., Ahmad, R., Zhu, Y., Li, G., Yu, Z., Li, J., Wang, E., Yun, S. and Yoon, H., 2020. Direct combustion of waste oil in domestic stove by an internal heat re-circulation atomization technology: Emission and performance analysis. Waste Management, 104, pp.20-32.
DOI: 10.1016/j.wasman.2020.01.007
Google Scholar
[9]
Zhao, N., Li, B.W., Chen, D.Y., Bahargul, T., Wang, R., Zhou, Y.G., Annegarn, H.J., Pemberton-Pigott, C., Dong, R.J., Ju, X.X., 2019a. The effect of coal size on PM2.5 and PM-bound polycyclic aromatic hydrocarbon (PAH) emissions from a domestic natural cross-draft stove. J. Energy Inst.
DOI: 10.1016/j.joei.2019.06.010
Google Scholar
[10]
Du, W., Zhu, X., Chen, Y.C., Liu, W.J., Wang, W., Shen, G.F., Tao, S., Jetter, J.J., 2018. Field-based emission measurements of biomass burning in typical Chinese built-in-place stoves. Environ. Pollut. 242, 1587–1597.
DOI: 10.1016/j.envpol.2018.07.121
Google Scholar
[11]
Mekonnen, B.A., Liyew, K.W. and Tigabu, M.T., 2020. Solar cooking in Ethiopia: Experimental testing and performance evaluation of SK14 solar cooker. Case Studies in Thermal Engineering, 22, p.100766.
DOI: 10.1016/j.csite.2020.100766
Google Scholar
[12]
Mekonnen, B.A., 2022. Thermal efficiency improvement and emission reduction potential by adopting improved biomass cookstoves for sauce-cooking process in rural Ethiopia. Case Studies in Thermal Engineering, 38, p.102315.
DOI: 10.1016/j.csite.2022.102315
Google Scholar
[13]
Ekaab, N.S., Hamza, N.H. and Chaichan, M.T., 2019. Performance and emitted pollutants assessment of diesel engine fuelled with biokerosene. Case Studies in Thermal Engineering, 13, p.100381.
DOI: 10.1016/j.csite.2018.100381
Google Scholar
[14]
B.A. Shanono, I. Diso, I. Garba, Performance and emission characteristics of liquid biofuels cooking stoves, Athens J. Technol. Eng. 7 (2020) 219–238.
DOI: 10.30958/ajte.7-3-4
Google Scholar
[15]
T.D. Tessema, B.A. Mekonnen, Assessment of improved biomass cook stoves in Ethiopia: utilization practices and adoption factors; the case of Merawi, Kolela district, Acad. Enterpren. J. 27 (2021) 1–19.
Google Scholar
[16]
National Non-Food Crops Centre. "Review of Technologies for Gasification of Biomass and Wastes, NNFCC project 09/008" June 2009 Retrieved 20 March 2022, from http: //wiki.gekgasifier.com/f/Review+of+Biomass+Gasification+Technologies.NNFCC.Jun09.pdf
Google Scholar
[17]
Bhattacharya, S.C. and Leon, M.A., 2005, April. Prospects for biomass gasifiers for cooking applications in Asia. In World Renewable Energy Regional Conference, Jakarta, Indonesia, 18-21 April 2005.
Google Scholar
[18]
Njenga, M., Iiyama, M., Jamnadass, R., Helander, H., Larsson, L., De Leeuw, J., Neufeldt, H., De Nowina, K.R. and Sundberg, C., 2016. Gasifier as a cleaner cooking system in rural Kenya. Journal of cleaner production, 121, pp.208-217.
DOI: 10.1016/j.jclepro.2016.01.039
Google Scholar