Potential of the Consortium Bacteria as A Domestic Waste Water Bioremediation Agent

Article Preview

Abstract:

Along with the increasing population in Indonesia, there has been an increase in domestic waste production. It is necessary to treat wastewater before it goes to the environment to prevent pollution of the environment. This research was conducted to investigate the potential of isolates A, B, and L from the Biology Department Universitas Negeri Malang as a bacterial consortium in decomposing domestic waste with the aerobic system to remove Chemical Oxygen Demand using a batch system. Experimental trials were carried out using synthetic domestic waste with variations in bacterial formulation treatments and starter doses. The results show that a more stable COD reduction performance was obtained in the batch test process. Sequentially, the COD reduction data efficiency includes B 20% (88.65%), L 20% (84.2%), A 10% (80%), A 20% (79.92%), ABL 10% (72.3%), B 10% (25.67%), ABL 20% (-10.87%), with the greatest efficiency occurring in the L10% treatment at 89.76%. The genotype analysis shows that A, B, and L isolates were identified as Alcaligenes ammonioxydans

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 9)

Pages:

55-60

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Badan Pusat Statistik, Air Dan Lingkungan. Environment Statistics of Indonesia: Water and Environment 2020 (2020).

Google Scholar

[2] H. Hawali Abdul Matin, J. Ashila, yuni Fatikha, M. Shofa Azizia, M. Fadhillah Armando, M. Reynaldi Putrayuda, and N. Wahyu Silaningtyas, Waste Technology 10, 43 (2022).

Google Scholar

[3] MENTERI NEGARA LINGKUNGAN HIDUP, PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP: TATA LAKSANA PENGENDALIAN PENCEMARAN AIR (Indonesia, 2010).

DOI: 10.37887/jimkesmas.v6i1.16182

Google Scholar

[4] M. Christwardana, H. Hadiyanto, S.A. Motto, S. Sudarno, and K. Haryani, Biomass Bioenergy 139, (2020).

DOI: 10.1016/j.biombioe.2020.105617

Google Scholar

[5] Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia, BAKU MUTU LIMBAH DOMESTIK (Indonesia, 2016).

Google Scholar

[6] N.I. Handayani, Jurnal Riset Teknologi Pencegahan Pencemaran Industri 6, 17 (2015).

Google Scholar

[7] L. Guerrero, S. Montalvo, E. Coronado, R. Chamy, P. Poirrier, D. Crutchik, E. Sanchez, M.A. De La Rubia, and R. Borja, J Environ Sci Health A Tox Hazard Subst Environ Eng 44, 673 (2009).

DOI: 10.1080/10934520902847794

Google Scholar

[8] C. Gurd, R. Villa, and B. Jefferson, J Environ Manage 267, (2020).

Google Scholar

[9] J. Lee, S. Lee, S. Yu, and D. Rhew, Environ Monit Assess 188, (2016).

Google Scholar

[10] S. Khan and J. Ali, in Bioassays: Advanced Methods and Applications (Elsevier, 2017), p.21–39.

Google Scholar

[11] D. Li and S. Liu, in Water Quality Monitoring and Management (Elsevier, 2019), p.221–231.

Google Scholar

[12] L. Waluyo, in (Seminar Nasional dan Gelar Produk | SENASPRO, Malang, 2017).

Google Scholar

[13] N.S. Musa and W.A. Ahmad, Malaysian Journal of Fundamental and Applied Sciences 6, (2014).

Google Scholar

[14] C.M. Werner, C. Hoppe-Jones, P.E. Saikaly, B.E. Logan, and G.L. Amy, Water Res 73, 56 (2015).

Google Scholar

[15] S.A. Warnares, B. Kamulyan, and A.T. Yuliansyah, ASEAN Journal of System Engineering 6, (2022).

Google Scholar

[16] C.A. Batt, in Encyclopedia of Food Microbiology: Second Edition (Elsevier Inc., 2014), p.38–41.

Google Scholar

[17] M. Shoda, in Beneficial Microbes in Agro-Ecology: Bacteria and Fungi (Elsevier, 2020), p.13–26.

Google Scholar

[18] M. Wu, T. Hou, Y. Liu, L. Miao, G. Ai, L. Ma, H. Zhu, Y. Zhu, X. Gao, C.W. Herbold, M. Wagner, D. Li, Z. Liu, and S. Liu, Environ Microbiol 23, 6965 (2021).

Google Scholar

[19] Y. Pan and D.F. Liu, Environ Sci Technol 57, 7106 (2023).

Google Scholar