Tunable Hydrophobicity and Photoluminescence in Polystyrene-Calcium Carbonate Composites with Citric Acid-Induced Porosity

Article Preview

Abstract:

Polystyrene (PS) is widely used in industries like packaging and insulation, but its performance can be enhanced by incorporating calcium carbonate as a filler. To improve polymer-filler compatibility, calcium carbonate was surface-modified with oleic acid, and PS-calcium carbonate composites were synthesized using the melt blending method, followed by citric acid treatment. X-ray diffraction (XRD) and FTIR analyses revealed no chemical interaction between the phases, with a reduction in calcium carbonate content due to citric acid treatment, suggesting partial dissolution of the filler. Scanning electron microscopy (SEM) images showed the formation of cavities in the matrix, especially in TPS3. Hardness testing indicated a decrease in hardness with increasing oleic acid concentration, with TPS3 exhibiting the lowest hardness (63.4 Shore D). Photoluminescence measurements showed a blue shift at lower oleic acid concentrations, while higher concentrations caused a red shift and broader emission, which was stabilized by citric acid treatment. Solvent absorption tests indicated that citric acid-treated composites had an enhanced absorption capacity, with TPS3 showing 38.3 % absorption in vegetable oil, suggesting potential for adsorption applications. Overall, the oleic acid and citric acid treatments significantly modified the mechanical, morphological, and optical properties of PS-calcium carbonate composites, creating tunable materials with potential for sensing applications.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] E. Awodi, and K. Adewumi, Exploring the Aesthetic Applications of Expanded Polystyrene: An Interdisciplinary Review, AJIMS 6 (2024) 1-15.

DOI: 10.51415/ajims.v6i1.1328

Google Scholar

[2] R. Yadav, M. Singh, D. Shekhawat, S.-Y. Lee, and S.-J. Park, The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review, Compos. - A: Appl. Sci. Manuf. 175 (2023) 1-9.

DOI: 10.1016/j.compositesa.2023.107775

Google Scholar

[3] Z. Ali, S. Yaqoob, J. Yu, and A. D'Amore, Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications, Compos. C: Open Access 13 (2024) 1-11.

DOI: 10.1016/j.jcomc.2024.100434

Google Scholar

[4] R. He, Y. Wu, Y. Liu, L. Luo, H. Xiao, C. Huang, X. Wang, Z. Zeng, J. He, and Y. Zhang, A superhydrophilic/air superoleophobic sponge based on low-temperature vacuum evaporation deposition modification for saving marine crude oil pollution and leakage, Prog. Org. Coat. 188 (2024) 1-13.

DOI: 10.1016/j.porgcoat.2023.108192

Google Scholar

[5] M.O. Awan, A. Shakoor, M.S. Rehan, and Y.Q. Gill, Development of HDPE composites with improved mechanical properties using calcium carbonate and NanoClay, Phys. B: Condens. Matter. 606 (2021) 1-16.

DOI: 10.1016/j.physb.2020.412568

Google Scholar

[6] A.H. Ritonga, N. Jamarun, S. Arief, H. Aziz, D.A. Tanjung, and B. Isfa, Improvement of Mechanical, Thermal, and Morphological Properties of Organo-Precipitated Calcium Carbonate Filled LLDPE/Cyclic Natural Rubber Composites, Indones. J Chem. 22 (2022) 233-241.

DOI: 10.22146/ijc.68888

Google Scholar

[7] F.C. Chiu, S.M. Lai, C.M. Wong, and C. Hui Chang, Properties of calcium carbonate filled and unfilled polystyrene foams prepared using supercritical carbon dioxide, J. Appl. Polym. Sci. 102 (2006) 2276-2284.

DOI: 10.1002/app.24424

Google Scholar

[8] E. Wang, L. Xiang, B. Tang, X. Dai, Z. Cao, T. Jiang, Y. Wang, X. Chen, W. Li, Y. Zhao, K. Yang, and X. Wu, Preparation and Compression Resistance of Lightweight Concrete Filled with Lightweight Calcium Carbonate Reinforced Expanded Polystyrene Foam, Polymers 15 (2023) 1-11.

DOI: 10.3390/polym15244642

Google Scholar

[9] A. Homavand, D.E. Cree, and L.D. Wilson, Polylactic Acid Composites Reinforced with Eggshell/CaCO3 Filler Particles: A Review, Waste 2 (2024) 169-185.

DOI: 10.3390/waste2020010

Google Scholar

[10] N. Mahmood, and M. Hikmat, The Effect of Calcium Carbonate-Nanoparticle on the Mechanical and Thermal Properties of Polymers Utilizing Different Types of Mixing and Surface Pre-Treatment: A Review Paper, J. Eng. Technol. (2023) 1-19.

DOI: 10.30684/etj.2023.142219.1523

Google Scholar

[11] J. Qiu, J.W. Lyu, J.L. Yang, K.B. Cui, H.Z. Liu, G.F. Wang, and X. Liu, Review on Preparation, Modification and Application of Nano‐Calcium Carbonate, Part. Part. Syst. Charact. 41 (2024) 1-12.

DOI: 10.1002/ppsc.202400097

Google Scholar

[12] A. Patti, H. Lecocq, A. Serghei, D. Acierno, and P. Cassagnau, The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing, J. Ind. Eng. Chem. 96 (2021) 1-33.

DOI: 10.1016/j.jiec.2021.01.024

Google Scholar

[13] R. Dweiri, Processing and Characterization of Surface Treated Chicken Eggshell and Calcium Carbonate Particles Filled High-Density Polyethylene Composites, Mater. Res. 24 (2021).

DOI: 10.1590/1980-5373-mr-2021-0078

Google Scholar

[14] L.T. Wang, Q. Chen, R.Y. Hong, and M.R. Kumar, Preparation of oleic acid modified multi-walled carbon nanotubes for polystyrene matrix and enhanced properties by solution blending, J. Mater. Sci.: Mater. Electron. 26 (2015) 1-9.

DOI: 10.1007/s10854-015-3542-x

Google Scholar

[15] N.M.F. Hakimi, S.H. Lee, W.C. Lum, S.F. Mohamad, S.S. Osman Al Edrus, B.-D. Park, and A. Azmi, Surface Modified Nanocellulose and Its Reinforcement in Natural Rubber Matrix Nanocomposites: A Review, Polymers 13 (2021) 1-24.

DOI: 10.3390/polym13193241

Google Scholar

[16] A. Kawamura, M. Saijyo, B. Bayarkhuu, N. Nishidate, I. Oikawa, S. Kobayashi, K. Oyanagi, Y. Shiba, T. Tsukamoto, Y. Oishi, and Y. Shibasaki, Fabrication of hyperbranched-polyglycidol-Fe3O4 nanocomposite labeled with fluorescein isothiocyanate via rapid ligand exchange reaction, Polymer 294 (2024) 1-10.

DOI: 10.1016/j.polymer.2024.126724

Google Scholar

[17] N.H. Aprilita, T. Febriani, P. Ofens, M. Nora, T.A. Nassir, E.T. Wahyuni, N. Sciences, and U.G. Mada, Conversion of the styrofoam waste into a high-capacity and recoverable adsorbent in the removing the toxic Pb2+ from water media, 26 (2024) 1-10.

Google Scholar

[18] I. Dragutan, F. Ding, Y. Sun, and V. Dragutan, Recent Developments in Multifunctional Coordination Polymers, Crystals 14 (2024) 1-7.

DOI: 10.3390/cryst14040301

Google Scholar

[19] P. Chenna, S. Gandi, S. Pookatt, and S.R. Parne, Perovskite white light emitting diodes: A review, Mater. Today Electron. 5 (2023) 1-24.

DOI: 10.1016/j.mtelec.2023.100057

Google Scholar

[20] P. Melnikov, A. Bobrov, and Y. Marfin, On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review, Polymers 14 (2022) 1-36.

DOI: 10.3390/polym14204448

Google Scholar

[21] A.K. Singh, Multifunctionality of lanthanide-based luminescent hybrid materials, Coord. Chem. Rev. 455 (2022) 1-9.

Google Scholar

[22] A.H. Ritonga, N. Jamarun, S. Arief, H. Aziz, D.A. Tanjung, B. Isfa, V. Sisca, and H. Faisal, Organic modification of precipitated calcium carbonate nanoparticles as filler in LLDPE/CNR blends with the presence of coupling agents: impact strength, thermal, and morphology, J. Mater. Res. Technol. 17 (2022) 2326-2332.

DOI: 10.1016/j.jmrt.2022.01.125

Google Scholar

[23] N. Thyashan, Y.S. Perera, R. Xiao, and C. Abeykoon, Investigation of the effect of materials and processing conditions in twin-screw extrusion, Int. J. Lightweight Mater. Manuf. 7 (2024) 353-361.

DOI: 10.1016/j.ijlmm.2023.09.003

Google Scholar

[24] H.M. Abd El-Lateef, M.M. Khalaf, M.F. Abou Taleb, and M. Gouda, Development of photoluminescent concrete from polystyrene plastic reinforced with electrospun polypropylene nanofibers, J. Photochem. Photobiol. A: Chem. 449 (2024) 1-9.

DOI: 10.1016/j.jphotochem.2023.115419

Google Scholar

[25] M. Al-Shirawi, M. Karimi, and R.S. Al-Maamari, Impact of carbonate surface mineralogy on wettability alteration using stearic acid, J. Pet. Sci. Eng. 203 (2021) 1-11.

DOI: 10.1016/j.petrol.2021.108674

Google Scholar

[26] P.M. Claesson, N.A. Wojas, R. Corkery, A. Dedinaite, J. Schoelkopf, and E. Tyrode, The dynamic nature of natural and fatty acid modified calcite surfaces, Phys. Chem. Chem. Phys. 26 (2024) 2780-2805.

DOI: 10.1039/d3cp04432g

Google Scholar

[27] N.A.M. Nasir, W.M.I.W.M. Kamaruzzaman, M.A. Badruddin, and M.S. Mohd Ghazali, Surface modification effects of CaCO3 and TiO2 nanoparticles in nonpolar solvents, J. Dispersion Sci. Technol. 45 (2024) 870-879.

DOI: 10.1080/01932691.2023.2186425

Google Scholar

[28] Y. Ma, P. Tian, M. Bounmyxay, Y. Zeng, and N. Wang, Calcium Carbonate@silica Composite with Superhydrophobic Properties, Molecules 26 (2021) 1-14.

DOI: 10.3390/molecules26237180

Google Scholar

[29] B. Kirkebæk, G. Simoni, I. Lankveld, M. Poulsen, M. Christensen, C.A. Quist-Jensen, D. Yu, and A. Ali, Oleic acid-coated magnetic particles for removal of oil from produced water, J. Pet. Sci. Eng. 211 (2022) 110088-110088.

DOI: 10.1016/j.petrol.2021.110088

Google Scholar

[30] A.A. Al-Muntaser, R.A. Pashameah, E. Alzahrani, S.A. AlSubhi, and A.E. Tarabiah, Tuning structural, optical, and dispersion functions of polystyrene via addition of meso-tetraphenylporphine manganese (III) chloride towards optoelectronic applications, Opt. Mater. 135 (2023) 1-12.

DOI: 10.1016/j.optmat.2022.113333

Google Scholar

[31] R. de Sousa Cunha, G.D. Mumbach, R.A.F. Machado, and A. Bolzan, A comprehensive investigation of waste expanded polystyrene recycling by dissolution technique combined with nanoprecipitation, Environ. Nanotechnol. Monit. Manag. 16 (2021) 1-7.

DOI: 10.1016/j.enmm.2021.100470

Google Scholar

[32] P. Zapata, H. Palza, B. Díaz, A. Armijo, F. Sepúlveda, J. Ortiz, M. Ramírez, and C. Oyarzún, Effect of CaCO3 Nanoparticles on the Mechanical and Photo-Degradation Properties of LDPE, Molecules 24 (2018) 1-12.

DOI: 10.3390/molecules24010126

Google Scholar

[33] H.E. Benchouia, H. Boussehel, B. Guerira, L. Sedira, C. Tedeschi, H.E. Becha, and M. Cucchi, An experimental evaluation of a hybrid bio-composite based on date palm petiole fibers, expanded polystyrene waste, and gypsum plaster as a sustainable insulating building material, Constr. Build. Mater. 422 (2024) 1-10.

DOI: 10.1016/j.conbuildmat.2024.135735

Google Scholar

[34] A. Bhattacharya, and S.K. Khare, Bioinspired mineralization and remediation of polystyrene nanoparticles by urease-induced calcite precipitation, J. Environ. Chem. Eng. 12 (2024) 1-10.

DOI: 10.1016/j.jece.2024.112092

Google Scholar

[35] N. Hayeemasae, and H. Ismail, Potential of calcium carbonate as secondary filler in eggshell powder filled recycled polystyrene composites, Polímeros 31 (2021) 1-7.

DOI: 10.1590/0104-1428.09720

Google Scholar

[36] M. Gouda, H.M. Abd El-Lateef, M.F. Abou Taleb, and M.M. Khalaf, Photoluminescent polypropylene nanofiber-supported polyethylene terephthalate integrated with strontium aluminate phosphor, J. Photochem. Photobiol. A: Chem. 453 (2024) 1-9.

DOI: 10.1016/j.jphotochem.2024.115675

Google Scholar

[37] M. Gouda, H.M. Abd El-Lateef, M.F. Abou Taleb, and M.M. Khalaf, Polylactic acid film embedded with phosphor nanoparticles: Photochromic and afterglow biodegradable window and concrete, J. Mol. Struct. 1300 (2024) 1-10.

DOI: 10.1016/j.molstruc.2023.137249

Google Scholar

[38] M. Tareeva, M. Shevchenko, S. Umanskaya, V. Savichev, A. Baranov, N. Tcherniega, and A. Kudryavtseva, Two-Photon Excited Luminescence in Polyethylene and Polytetrafluoroethylene, J. Russ. Laser Res. 41 (2020) 502-508.

DOI: 10.1007/s10946-020-09903-8

Google Scholar