[1]
E. Awodi, and K. Adewumi, Exploring the Aesthetic Applications of Expanded Polystyrene: An Interdisciplinary Review, AJIMS 6 (2024) 1-15.
DOI: 10.51415/ajims.v6i1.1328
Google Scholar
[2]
R. Yadav, M. Singh, D. Shekhawat, S.-Y. Lee, and S.-J. Park, The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review, Compos. - A: Appl. Sci. Manuf. 175 (2023) 1-9.
DOI: 10.1016/j.compositesa.2023.107775
Google Scholar
[3]
Z. Ali, S. Yaqoob, J. Yu, and A. D'Amore, Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications, Compos. C: Open Access 13 (2024) 1-11.
DOI: 10.1016/j.jcomc.2024.100434
Google Scholar
[4]
R. He, Y. Wu, Y. Liu, L. Luo, H. Xiao, C. Huang, X. Wang, Z. Zeng, J. He, and Y. Zhang, A superhydrophilic/air superoleophobic sponge based on low-temperature vacuum evaporation deposition modification for saving marine crude oil pollution and leakage, Prog. Org. Coat. 188 (2024) 1-13.
DOI: 10.1016/j.porgcoat.2023.108192
Google Scholar
[5]
M.O. Awan, A. Shakoor, M.S. Rehan, and Y.Q. Gill, Development of HDPE composites with improved mechanical properties using calcium carbonate and NanoClay, Phys. B: Condens. Matter. 606 (2021) 1-16.
DOI: 10.1016/j.physb.2020.412568
Google Scholar
[6]
A.H. Ritonga, N. Jamarun, S. Arief, H. Aziz, D.A. Tanjung, and B. Isfa, Improvement of Mechanical, Thermal, and Morphological Properties of Organo-Precipitated Calcium Carbonate Filled LLDPE/Cyclic Natural Rubber Composites, Indones. J Chem. 22 (2022) 233-241.
DOI: 10.22146/ijc.68888
Google Scholar
[7]
F.C. Chiu, S.M. Lai, C.M. Wong, and C. Hui Chang, Properties of calcium carbonate filled and unfilled polystyrene foams prepared using supercritical carbon dioxide, J. Appl. Polym. Sci. 102 (2006) 2276-2284.
DOI: 10.1002/app.24424
Google Scholar
[8]
E. Wang, L. Xiang, B. Tang, X. Dai, Z. Cao, T. Jiang, Y. Wang, X. Chen, W. Li, Y. Zhao, K. Yang, and X. Wu, Preparation and Compression Resistance of Lightweight Concrete Filled with Lightweight Calcium Carbonate Reinforced Expanded Polystyrene Foam, Polymers 15 (2023) 1-11.
DOI: 10.3390/polym15244642
Google Scholar
[9]
A. Homavand, D.E. Cree, and L.D. Wilson, Polylactic Acid Composites Reinforced with Eggshell/CaCO3 Filler Particles: A Review, Waste 2 (2024) 169-185.
DOI: 10.3390/waste2020010
Google Scholar
[10]
N. Mahmood, and M. Hikmat, The Effect of Calcium Carbonate-Nanoparticle on the Mechanical and Thermal Properties of Polymers Utilizing Different Types of Mixing and Surface Pre-Treatment: A Review Paper, J. Eng. Technol. (2023) 1-19.
DOI: 10.30684/etj.2023.142219.1523
Google Scholar
[11]
J. Qiu, J.W. Lyu, J.L. Yang, K.B. Cui, H.Z. Liu, G.F. Wang, and X. Liu, Review on Preparation, Modification and Application of Nano‐Calcium Carbonate, Part. Part. Syst. Charact. 41 (2024) 1-12.
DOI: 10.1002/ppsc.202400097
Google Scholar
[12]
A. Patti, H. Lecocq, A. Serghei, D. Acierno, and P. Cassagnau, The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing, J. Ind. Eng. Chem. 96 (2021) 1-33.
DOI: 10.1016/j.jiec.2021.01.024
Google Scholar
[13]
R. Dweiri, Processing and Characterization of Surface Treated Chicken Eggshell and Calcium Carbonate Particles Filled High-Density Polyethylene Composites, Mater. Res. 24 (2021).
DOI: 10.1590/1980-5373-mr-2021-0078
Google Scholar
[14]
L.T. Wang, Q. Chen, R.Y. Hong, and M.R. Kumar, Preparation of oleic acid modified multi-walled carbon nanotubes for polystyrene matrix and enhanced properties by solution blending, J. Mater. Sci.: Mater. Electron. 26 (2015) 1-9.
DOI: 10.1007/s10854-015-3542-x
Google Scholar
[15]
N.M.F. Hakimi, S.H. Lee, W.C. Lum, S.F. Mohamad, S.S. Osman Al Edrus, B.-D. Park, and A. Azmi, Surface Modified Nanocellulose and Its Reinforcement in Natural Rubber Matrix Nanocomposites: A Review, Polymers 13 (2021) 1-24.
DOI: 10.3390/polym13193241
Google Scholar
[16]
A. Kawamura, M. Saijyo, B. Bayarkhuu, N. Nishidate, I. Oikawa, S. Kobayashi, K. Oyanagi, Y. Shiba, T. Tsukamoto, Y. Oishi, and Y. Shibasaki, Fabrication of hyperbranched-polyglycidol-Fe3O4 nanocomposite labeled with fluorescein isothiocyanate via rapid ligand exchange reaction, Polymer 294 (2024) 1-10.
DOI: 10.1016/j.polymer.2024.126724
Google Scholar
[17]
N.H. Aprilita, T. Febriani, P. Ofens, M. Nora, T.A. Nassir, E.T. Wahyuni, N. Sciences, and U.G. Mada, Conversion of the styrofoam waste into a high-capacity and recoverable adsorbent in the removing the toxic Pb2+ from water media, 26 (2024) 1-10.
Google Scholar
[18]
I. Dragutan, F. Ding, Y. Sun, and V. Dragutan, Recent Developments in Multifunctional Coordination Polymers, Crystals 14 (2024) 1-7.
DOI: 10.3390/cryst14040301
Google Scholar
[19]
P. Chenna, S. Gandi, S. Pookatt, and S.R. Parne, Perovskite white light emitting diodes: A review, Mater. Today Electron. 5 (2023) 1-24.
DOI: 10.1016/j.mtelec.2023.100057
Google Scholar
[20]
P. Melnikov, A. Bobrov, and Y. Marfin, On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review, Polymers 14 (2022) 1-36.
DOI: 10.3390/polym14204448
Google Scholar
[21]
A.K. Singh, Multifunctionality of lanthanide-based luminescent hybrid materials, Coord. Chem. Rev. 455 (2022) 1-9.
Google Scholar
[22]
A.H. Ritonga, N. Jamarun, S. Arief, H. Aziz, D.A. Tanjung, B. Isfa, V. Sisca, and H. Faisal, Organic modification of precipitated calcium carbonate nanoparticles as filler in LLDPE/CNR blends with the presence of coupling agents: impact strength, thermal, and morphology, J. Mater. Res. Technol. 17 (2022) 2326-2332.
DOI: 10.1016/j.jmrt.2022.01.125
Google Scholar
[23]
N. Thyashan, Y.S. Perera, R. Xiao, and C. Abeykoon, Investigation of the effect of materials and processing conditions in twin-screw extrusion, Int. J. Lightweight Mater. Manuf. 7 (2024) 353-361.
DOI: 10.1016/j.ijlmm.2023.09.003
Google Scholar
[24]
H.M. Abd El-Lateef, M.M. Khalaf, M.F. Abou Taleb, and M. Gouda, Development of photoluminescent concrete from polystyrene plastic reinforced with electrospun polypropylene nanofibers, J. Photochem. Photobiol. A: Chem. 449 (2024) 1-9.
DOI: 10.1016/j.jphotochem.2023.115419
Google Scholar
[25]
M. Al-Shirawi, M. Karimi, and R.S. Al-Maamari, Impact of carbonate surface mineralogy on wettability alteration using stearic acid, J. Pet. Sci. Eng. 203 (2021) 1-11.
DOI: 10.1016/j.petrol.2021.108674
Google Scholar
[26]
P.M. Claesson, N.A. Wojas, R. Corkery, A. Dedinaite, J. Schoelkopf, and E. Tyrode, The dynamic nature of natural and fatty acid modified calcite surfaces, Phys. Chem. Chem. Phys. 26 (2024) 2780-2805.
DOI: 10.1039/d3cp04432g
Google Scholar
[27]
N.A.M. Nasir, W.M.I.W.M. Kamaruzzaman, M.A. Badruddin, and M.S. Mohd Ghazali, Surface modification effects of CaCO3 and TiO2 nanoparticles in nonpolar solvents, J. Dispersion Sci. Technol. 45 (2024) 870-879.
DOI: 10.1080/01932691.2023.2186425
Google Scholar
[28]
Y. Ma, P. Tian, M. Bounmyxay, Y. Zeng, and N. Wang, Calcium Carbonate@silica Composite with Superhydrophobic Properties, Molecules 26 (2021) 1-14.
DOI: 10.3390/molecules26237180
Google Scholar
[29]
B. Kirkebæk, G. Simoni, I. Lankveld, M. Poulsen, M. Christensen, C.A. Quist-Jensen, D. Yu, and A. Ali, Oleic acid-coated magnetic particles for removal of oil from produced water, J. Pet. Sci. Eng. 211 (2022) 110088-110088.
DOI: 10.1016/j.petrol.2021.110088
Google Scholar
[30]
A.A. Al-Muntaser, R.A. Pashameah, E. Alzahrani, S.A. AlSubhi, and A.E. Tarabiah, Tuning structural, optical, and dispersion functions of polystyrene via addition of meso-tetraphenylporphine manganese (III) chloride towards optoelectronic applications, Opt. Mater. 135 (2023) 1-12.
DOI: 10.1016/j.optmat.2022.113333
Google Scholar
[31]
R. de Sousa Cunha, G.D. Mumbach, R.A.F. Machado, and A. Bolzan, A comprehensive investigation of waste expanded polystyrene recycling by dissolution technique combined with nanoprecipitation, Environ. Nanotechnol. Monit. Manag. 16 (2021) 1-7.
DOI: 10.1016/j.enmm.2021.100470
Google Scholar
[32]
P. Zapata, H. Palza, B. Díaz, A. Armijo, F. Sepúlveda, J. Ortiz, M. Ramírez, and C. Oyarzún, Effect of CaCO3 Nanoparticles on the Mechanical and Photo-Degradation Properties of LDPE, Molecules 24 (2018) 1-12.
DOI: 10.3390/molecules24010126
Google Scholar
[33]
H.E. Benchouia, H. Boussehel, B. Guerira, L. Sedira, C. Tedeschi, H.E. Becha, and M. Cucchi, An experimental evaluation of a hybrid bio-composite based on date palm petiole fibers, expanded polystyrene waste, and gypsum plaster as a sustainable insulating building material, Constr. Build. Mater. 422 (2024) 1-10.
DOI: 10.1016/j.conbuildmat.2024.135735
Google Scholar
[34]
A. Bhattacharya, and S.K. Khare, Bioinspired mineralization and remediation of polystyrene nanoparticles by urease-induced calcite precipitation, J. Environ. Chem. Eng. 12 (2024) 1-10.
DOI: 10.1016/j.jece.2024.112092
Google Scholar
[35]
N. Hayeemasae, and H. Ismail, Potential of calcium carbonate as secondary filler in eggshell powder filled recycled polystyrene composites, Polímeros 31 (2021) 1-7.
DOI: 10.1590/0104-1428.09720
Google Scholar
[36]
M. Gouda, H.M. Abd El-Lateef, M.F. Abou Taleb, and M.M. Khalaf, Photoluminescent polypropylene nanofiber-supported polyethylene terephthalate integrated with strontium aluminate phosphor, J. Photochem. Photobiol. A: Chem. 453 (2024) 1-9.
DOI: 10.1016/j.jphotochem.2024.115675
Google Scholar
[37]
M. Gouda, H.M. Abd El-Lateef, M.F. Abou Taleb, and M.M. Khalaf, Polylactic acid film embedded with phosphor nanoparticles: Photochromic and afterglow biodegradable window and concrete, J. Mol. Struct. 1300 (2024) 1-10.
DOI: 10.1016/j.molstruc.2023.137249
Google Scholar
[38]
M. Tareeva, M. Shevchenko, S. Umanskaya, V. Savichev, A. Baranov, N. Tcherniega, and A. Kudryavtseva, Two-Photon Excited Luminescence in Polyethylene and Polytetrafluoroethylene, J. Russ. Laser Res. 41 (2020) 502-508.
DOI: 10.1007/s10946-020-09903-8
Google Scholar