[1]
D. Li, Z. Zhou, H. Deng, C. Wang, K. Li, C. Wang, and P. Teng, "2D obstacle avoidance method for snake robot based on modified artificial potential field," in 2017 IEEE International Conference on Unmanned Systems (ICUS), Oct. 2017, pp.358-363. [Online]. Available: https://ieeexplore.ieee.org/document/8278369
DOI: 10.1109/icus.2017.8278369
Google Scholar
[2]
D. Dragone, F. F. Donadio, C. Mirabelli, C. Cosentino, F. Amato, P. Zaffino, M. F. Spadea, D. La Torre, and A. Merola, "Design and Experimental Validation of a 3D-Printed EmbeddedSensing Continuum Robot for Neurosurgery," Micromachines, vol. 14, no. 9, p.1743, Sep. 2023, number: 9 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2072-666X/14/9/1743
DOI: 10.3390/mi14091743
Google Scholar
[3]
Y. Wang, P. Pandit, A. Kandhari, Z. Liu, and K. A. Daltorio, "Rapidly Exploring Random Tree Algorithm-Based Path Planning for Worm-Like Robot," Biomimetics, vol. 5, no. 2, p.26, Jun. 2020, number: 2 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2313-7673/5/2/26
DOI: 10.3390/biomimetics5020026
Google Scholar
[4]
A. Kandhari, A. Mehringer, H. J. Chiel, R. D. Quinn, and K. A. Daltorio, "Design and Actuation of a Fabric-Based Worm-Like Robot," Biomimetics, vol. 4, no. 1, p.13, Mar. 2019, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2313-7673/4/1/13
DOI: 10.3390/biomimetics4010013
Google Scholar
[5]
D. E. Martinez-Sanchez, X. Y. Sandoval-Castro, N. Cruz-Santos, E. Castillo-Castaneda, M. F. Ruiz-Torres, and M. A. Laribi, "Soft Robot for Inspection Tasks Inspired on Annelids to Obtain Peristaltic Locomotion," Machines, vol. 11, no. 8, p.779, Aug. 2023, number: 8 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/ 2075-1702/11/8/779
DOI: 10.3390/machines11080779
Google Scholar
[6]
J. De la Fuente, R. Shor, and S. Larter, "Single Actuator Peristaltic Robot for Subsurface Exploration and Device Emplacement," in 2020 IEEE International Conference on Robotics and Automation (ICRA), May 2020, pp.8096-8102, iSSN: 2577-087X. [Online]. Available: https://ieeexplore.ieee.org/document/9196823
DOI: 10.1109/icra40945.2020.9196823
Google Scholar
[7]
V. Lara-Ortiz, I. Salgado, D. Cruz-Ortiz, A. Guarneros, M. Magos-Sanchez, and I. Chairez, "Hybrid State Constraint Adaptive Disturbance Rejection Controller for a Mobile Worm Bio-Inspired Robot," Mathematical and Computational Applications, vol. 25, no. 1, p.13, Mar. 2020, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2297-8747/25/1/13
DOI: 10.3390/mca25010013
Google Scholar
[8]
D. Shachaf, R. Katz, and D. Zarrouk, "Wave-like Robotic Locomotion between Highly Flexible Surfaces and Comparison to Worm Robot Locomotion," Biomimetics, vol. 8, no. 5, p.416
DOI: 10.3390/biomimetics8050416
Google Scholar
[10]
B. W. Mulvey, T. D. Lalitharatne, and T. Nanayakkara, "DeforMoBot: A Bio-Inspired Deformable Mobile Robot for Navigation Among Obstacles," IEEE Robotics and Automation Letters, vol. 8, no. 6, pp.3828-3835, Jun. 2023, conference Name: IEEE Robotics and Automation Letters. [Online]. Available: https://ieeexplore.ieee.org/document/10119142
DOI: 10.1109/lra.2023.3273393
Google Scholar
[11]
M. B. Khan, T. Chuthong, C. Danh Do, M. Thor, P. Billeschou, J. C. Larsen, and P. Manoonpong, "iCrawl: An Inchworm-Inspired Crawling Robot," IEEE Access, vol. 8, pp.200-668, 2020, conference Name: IEEE Access. [Online]. Available: https://ieeexplore.ieee.org/document/9248054
DOI: 10.1109/access.2020.3035871
Google Scholar
[12]
E. Almanzor, F. Ye, J. Shi, T. G. Thuruthel, H. A. Wurdemann, and F. Iida, "Static Shape Control of Soft Continuum Robots Using Deep Visual Inverse Kinematic Models," IEEE Transactions on Robotics, vol. 39, no. 4, pp.2973-2988, Aug. 2023, conference Name: IEEE Transactions on Robotics. [Online]. Available: https://ieeexplore.ieee.org/document/10144108
DOI: 10.1109/tro.2023.3275375
Google Scholar
[13]
"Reaction Force Analysis for Obstacle-Aided Locomotion of Snake Robot Using Piecewise Helixes | IEEE Journals & Magazine | IEEE Xplore." [Online]. Available: https://ieeexplore. ieee.org/document/10114938
DOI: 10.1109/access.2023.3272751
Google Scholar
[14]
L. Shao, B. Guo, Y. Wang, and X. Chen, "An overview on theory and implementation of snake-like robots," in 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Aug. 2015, pp.70-75, iSSN: 2152-744X. [Online]. Available: https: //ieeexplore.ieee.org/document/7237459
DOI: 10.1109/icma.2015.7237459
Google Scholar
[15]
Z. Zhao, B. He, W. Luo, and R. Liu, "Collective Conditioned Reflex: A Bio-Inspired Fast Emergency Reaction Mechanism for Designing Safe Multi-Robot Systems," IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.10-990, Oct. 2022, conference Name: IEEE Robotics and Automation Letters. [Online]. Available: https://ieeexplore.ieee.org/document/ 9826885
DOI: 10.1109/lra.2022.3190098
Google Scholar
[16]
D. Zarrouk, I. Sharf, and M. Shoham, "Experimental validation of locomotion efficiency of worm-like robots and contact compliance," in 2012 IEEE International Conference on Robotics and Automation. St Paul, MN, USA: IEEE, May 2012, pp.5080-5085. [Online]. Available: http://ieeexplore.ieee.org/document/6224782/
DOI: 10.1109/icra.2012.6224782
Google Scholar
[17]
C. Wu, Z. Zhang, and W. Zheng, "A Twisted and Coiled Polymer Artificial Muscles Driven Soft Crawling Robot Based on Enhanced Antagonistic Configuration," Machines, vol. 10, no. 2, p.142, Feb. 2022, number: 2 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2075-1702/10/2/142
DOI: 10.3390/machines10020142
Google Scholar
[18]
Z. Jing, Q. Li, W. Su, and Y. Chen, "Dielectric Elastomer-Driven Bionic Inchworm Soft Robot Realizes Forward and Backward Movement and Jump," Actuators, vol. 11, no. 8, p.227, Aug. 2022, number: 8 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2076-0825/11/8/227
DOI: 10.3390/act11080227
Google Scholar
[19]
W. Yang and W. Zhang, "A Worm-Inspired Robot Flexibly Steering on Horizontal and Vertical Surfaces," Applied Sciences, vol. 9, no. 10, p.2168
DOI: 10.3390/app9102168
Google Scholar
[21]
"Snake Robot Gripper Module for Search and Rescue in Narrow Spaces | IEEE Journals & Magazine | IEEE Xplore." [Online]. Available: https://ieeexplore.ieee.org/document/9676464
Google Scholar
[22]
J. Homchanthanakul and P. Manoonpong, "Proactive Body Joint Adaptation for EnergyEfficient Locomotion of Bio-Inspired Multi-Segmented Robots," IEEE Robotics and Automation Letters, vol. 8, no. 2, pp.904-911, Feb. 2023, conference Name: IEEE Robotics and Automation Letters. [Online]. Available: https://ieeexplore.ieee.org/document/10008021
DOI: 10.1109/lra.2023.3234773
Google Scholar
[23]
D. Zarrouk, I. Sharf, and M. Shoham, "Conditions for Worm-Robot Locomotion in a Flexible Environment: Theory and Experiments," IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp.1057-1067, Apr. 2012, conference Name: IEEE Transactions on Biomedical Engineering. [Online]. Available: https://ieeexplore.ieee.org/document/6123200?denied=
DOI: 10.1109/tbme.2011.2182612
Google Scholar
[24]
--, "Analysis of Wormlike Robotic Locomotion on Compliant Surfaces," IEEE Transactions on Biomedical Engineering, vol. 58, no. 2, pp.301-309, Feb. 2011, conference Name: IEEE Transactions on Biomedical Engineering. [Online]. Available: https://ieeexplore.ieee.org/ document/5546923?denied=
DOI: 10.1109/tbme.2010.2066274
Google Scholar
[25]
M. Lapresa, C. Tamantini, F. Scotto di Luzio, M. Ferlazzo, G. Sorrenti, F. Corpina, and L. Zollo, "Validation of Magneto-Inertial Measurement Units for Upper-Limb Motion Analysis Through an Anthropomorphic Robot," IEEE Sensors Journal, vol. 22, no. 17, pp.16-928, Sep. 2022, conference Name: IEEE Sensors Journal. [Online]. Available: https://ieeexplore.ieee.org/document/9844451
DOI: 10.1109/jsen.2022.3193313
Google Scholar
[26]
M. Luo, Z. Wan, Y. Sun, E. H. Skorina, W. Tao, F. Chen, L. Gopalka, H. Yang, and C. D. Onal, "Motion Planning and Iterative Learning Control of a Modular Soft Robotic Snake," Frontiers in Robotics and AI, vol. 7, Dec. 2020, publisher: Frontiers. [Online]. Available: https://www.frontiersin.org/articles/
DOI: 10.3389/frobt.2020.599242
Google Scholar
[27]
V. Barral Vales, O. C. Fernández, T. Domínguez-Bolaño, C. J. Escudero, and J. A. García-Naya, "Fine Time Measurement for the Internet of Things: A Practical Approach Using ESP32," IEEE Internet of Things Journal, vol. 9, no. 19, pp.18-318, Oct. 2022, conference Name: IEEE Internet of Things Journal. [Online]. Available: https://ieeexplore.ieee.org/document/9733026
DOI: 10.1109/jiot.2022.3158701
Google Scholar
[28]
A. Indu and S. Kumar, "An Approach for Implementing Innovative Weather Monitoring System with DHT11 Sensor and Arduino Uno Tool based on IoT," in 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Nov. 2022, pp.274-278, iSSN: 2768-0673. [Online]. Available: https://ieeexplore.ieee.org/document/9987289
DOI: 10.1109/i-smac55078.2022.9987289
Google Scholar
[29]
"An Improved Real-Time Path Planning Method Based on Dragonfly Algorithm for Heterogeneous Multi-Robot System | IEEE Journals & Magazine | IEEE Xplore." [Online]. Available: https://ieeexplore.ieee.org/document/9152817
DOI: 10.1109/access.2020.3012886
Google Scholar
[30]
L. Shao, B. Guo, Y. Wang, and X. Chen, "An overview on theory and implementation of snake-like robots," in 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Aug. 2015, pp.70-75, iSSN: 2152-744X. [Online]. Available: https: //ieeexplore.ieee.org/document/7237459
DOI: 10.1109/icma.2015.7237459
Google Scholar