[1]
Outa, J.O., Kowenje, C.O., Plessl, C. et al. Distribution of arsenic, silver, cadmium, lead and other trace elements in water, sediment and macrophytes in the Kenyan part of Lake Victoria: spatial, temporal and bioindicative aspects. Environ Sci Pollut Res 27, 1485–1498 (2020).
DOI: 10.1007/s11356-019-06525-9
Google Scholar
[2]
Mehndiratta, M. M., & Garg, D. (2023). Beware! We are Skating on a Thin Ice: Air Pollution is a Killer. The Journal of the Association of Physicians of India, 71(7), 11–12.
Google Scholar
[3]
Addisu, A. (2023). Indoor Air Pollution. IntechOpen
DOI: 10.5772/intechopen.110587
Google Scholar
[4]
Gaikwad, Asha & Shivhare, Niharika. (2020). INDOOR AIR POLLUTION-A Threat.
Google Scholar
[5]
Kim Y, Radoias V. Severe Air Pollution Exposure and Long-Term Health Outcomes. Int J Environ Res Public Health. 2022 Oct 27;19(21):14019. doi: 10.3390/ijerph192114019. PMID: 36360899; PMCID: PMC9655248.
DOI: 10.3390/ijerph192114019
Google Scholar
[6]
Faustini, Annunziata. (2021). Air Pollutants Short-Term and Long Term Effects.
DOI: 10.1016/B978-0-08-102723-3.00181-5
Google Scholar
[7]
Cucchi I, Chanel O. Long-term health and economic impacts of air pollution in Greater Geneva. JAPH. 2023;8(2):135-156.
DOI: 10.18502/japh.v8i2.12914
Google Scholar
[8]
Bostan, Pınar. (2022). Health effects of outdoor air pollutants. World Journal of Environmental Research. 12. 70-81.
DOI: 10.18844/wjer.v12i2.8095
Google Scholar
[9]
A. S. Sofia, S. V. J, S. K, S. K and T. M, "APD - ML: Air Pollution Detection Using Machine Learning Algorithms," 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 2023, pp.1-5.
DOI: 10.1109/ViTECoN58111.2023.10157131
Google Scholar
[10]
S. Rani, P. Kumari and S. K. Singh, "Machine Learning-based Multiclass Classification Model for Effective Air Quality Prediction," 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), London, United Kingdom, 2023, pp.1-7.
DOI: 10.1109/GlobConET56651.2023.10149947
Google Scholar
[11]
Sharma, Meghna & Gupta, Eishita & D., Viji. (2023). Air Quality Index (AQI) Prediction using Automated Machine Learning with TPOT-ANN*. 1-9.
DOI: 10.1109/RAEEUCCI57140.2023.10134166
Google Scholar
[12]
Ghadei, Madhusmita. (2018). Amaravati - A City Reborn, Journey Towards a World-Class Smart City. 15-29.
DOI: 10.1007/978-3-319-61645-2_2
Google Scholar
[13]
N., V., Krishna, Prasad., P., Sasikala., N., Madhavi., T., Anil, Babu., Thomaskutty, Mathew., S., Ramesh., M., S., S., R., K., N., Sarma., B., Ramesh, Naik. (2020). Analysis of seasonal variation in particulate matter and relevant pollutants for three stations of andhra pradesh (India) during the period (2018-2020) using multivariate regression analysis
DOI: 10.37418/AMSJ.9.12.35
Google Scholar
[14]
Usharani, Bhimavarapu. "Long-Term Effects of Climate Change on Housing Market analytics in Amaravati, Capital of Andhra Pradesh in India, Using Machine Learning." In Handbook of Research on Climate Change and the Sustainable Financial Sector, edited by Odunayo Magret Olarewaju and Idris Olayiwola Ganiyu, 331-352. Hershey, PA: IGI Global, 2021
DOI: 10.4018/978-1-7998-7967-1.ch020
Google Scholar
[15]
Ghosh, Debreka & Sarkar, Ujjaini. (2015). Analysis of the photochemical production of ozone using Tropospheric Ultraviolet-Visible (TUV) Radiation Model in an Asian megacity. Air Quality, Atmosphere & Health. 9.
DOI: 10.1007/s11869-015-0346-3
Google Scholar
[16]
Lupaşcu, A., Otero, N., Minkos, A., and Butler, T.: Attribution of surface ozone to NOx and volatile organic compound sources during two different high ozone events, Atmos. Chem. Phys., 22, 11675–11699, https://doi.org/10.5194/acp-22-11675-2022, 2022.
DOI: 10.5194/acp-22-11675-2022
Google Scholar
[17]
Dhanya, G., T. S. Pranesha, K. Nagaraja, D. M. Chate, and G. Beig. 2022. "Variation of Ozone, Carbon Monoxide, and Oxides of Nitrogen at Bengaluru, India". Journal of Scientific Research 14 (2):459-70.
DOI: 10.3329/jsr.v14i2.55626
Google Scholar
[18]
Prabhu, V., Singh, P., Kulkarni, P. et al. Characteristics and health risk assessment of fine particulate matter and surface ozone: results from Bengaluru, India. Environ Monit Assess 194, 211 (2022)
DOI: 10.1007/s10661-022-09852-6
Google Scholar
[19]
Peter, Anju & Raj, Monish & Gangadharan, Praveena & Pavizham, Athira & SM, Shiva Nagendra. (2023). Trends, Extreme Events and Long-term Health Impacts of Particulate Matter in a Southern Indian Industrial Area. Water, Air, & Soil Pollution. 234.
DOI: 10.1007/s11270-023-06302-y
Google Scholar
[20]
Yadav, Rahul Kant & Gadhavi, Harish & Arora, Akanksha & Mohbey, K. & Kumar, Sunil & Lal, Shyam & Mallik, Chinmay. (2023). Relation between PM 2.5 and O 3 over Different Urban Environmental Regimes in India.
DOI: 10.3390/urbansci7010009
Google Scholar
[21]
Gupta, Jyothi. (2023). Statistical Assessment of Spatial Autocorrelation on Air Quality in Bengaluru, India. 17. 12.
DOI: 10.1007/978-3-031-31164-2_21
Google Scholar
[22]
P. Sujatha, Jai Shirisha PVS, Krishna Nivash J. and P.V.S. Janardhanam (2023); IMPACT OF URBANIZATION IN CHENNAI Int. J. of Adv. Res. 11 (May). 851-871 (ISSN 2320-5407). www.journalijar.com
DOI: 10.21474/ijar01/16939
Google Scholar
[23]
Nirmala, Muthu & Mallika, M.. (2023). Trend Analysis of Air Quality Index in Chennai, India.
DOI: 10.9734/bpi/npgees/v6/18578D
Google Scholar
[24]
Karuppannan, Shankar & Narasimhan, C. Lakshmi & Hussain, Sajjad & Almohamad, Hussein & Abdullah, Ahmed & Dughairi, Ahmed & Al-Mutiry, Motrih & Alkayyadi, Ibrahim & Abdo, Hazem & Li, Chi & Lu, Xiao & Zhang, Yuqiang & K, Manikanda Bharath & Natesan, Usha. (2022). Multivariate Urban Air Quality Assessment of Indoor and Outdoor Environments at Chennai Metropolis in South India. Atmosphere.
DOI: 10.3390/atmos13101627
Google Scholar
[25]
Pillai, Priyadarshini & Taylor, George. (2023). Evaluating Air Pollution Tolerance Index (APTI) of Some Plants Species in Bengaluru City. Advances in Zoology and Botany. 11. 139-149.
DOI: 10.13189/azb.2023.110206
Google Scholar
[26]
Maring, Teshilring & Suman, Dr & Jha, Ajay & Kumar, Naresh & Pandey, Shri. (2023). Airborne Particulate Matter and Associated Heavy Metals: A Review. Macromolecular Symposia. 407.
DOI: 10.1002/masy.202100487
Google Scholar
[27]
Jung, Miyeon, Daegon Cho, and Kwangsoo Shin. 2019. "The Impact of Particulate Matter on Outdoor Activity and Mental Health: A Matching Approach" International Journal of Environmental Research and Public Health 16, no. 16: 2983
DOI: 10.3390/ijerph16162983
Google Scholar
[28]
Thanusree, G & Kiran, M & Reddy, A & Rangaswamy, Prem Sudha & Parida, Arati & Aakanksha, Keesagani & Reddy, G. (2023). Air Quality Monitoring at Heavy Traffic Zone in Hyderabad. 2581-9429.
DOI: 10.48175/IJARSCT-9526
Google Scholar
[29]
Kumar, Athur & Kalyan, Kumar & Rama, Krishna. (2023). Assessment of dispersion of pollutants due to Industrial Sources using AERMOD near Hyderabad city, India. Research Journal of Chemistry and Environment. 27. 114-121.
DOI: 10.25303/2702rjce1140121
Google Scholar
[30]
C. Wieland and V. Pankratius, "Regressor-Rater: A Resource-Efficient One-Shot Learner For Estimating Prediction Intervals," 2023 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 2023, pp.0127-0133.
DOI: 10.1109/AIIoT58121.2023.10174567
Google Scholar
[31]
Sukuman, Thanakon & Ueda, Kayo & Sujaritpong, Sarunya & Praekunatham, Hirunwut & Punnasiri, Kornwipa & Wimuktayon, Tuangsit & Prapaspongsa, Trakarn. (2023). Health Impacts from PM2.5 Exposure Using Environmental Epidemiology and Health Risk Assessment: A Review. Applied Environmental Research. 1-14.
DOI: 10.35762/AER.2023010
Google Scholar
[32]
Garcia, Amanda & Helena, Eduarda & De Falco, Anna & Ribeiro, Joaquim & Gioda, Carolina. (2023). Toxicological Effects of Fine Particulate Matter (PM2.5): Health Risks and Associated Systemic Injuries—Systematic Review. Water, Air, & Soil Pollution. 234.
DOI: 10.1007/s11270-023-06278-9
Google Scholar
[33]
Li, Ding & Xiao, Han & Ma, Shuang & Zhang, Jiangxue. (2021). Health Benefits of Air Quality Improvement: Empirical Research Based on Medical Insurance Reimbursement Data. SSRN Electronic Journal.
DOI: 10.2139/ssrn.3952375
Google Scholar
[34]
Aithal, Sathya & Sachdeva, Ishaan & Kurmi, Om. (2023). Air quality and respiratory health in children. Breathe. 19. 230040.
DOI: 10.1183/20734735.0040-2023
Google Scholar
[35]
Yu Z, Merid SK, Bellander T, Bergström A, Eneroth K, Georgelis A, Hallberg J, Kull I, Ljungman P, Klevebro S, Stafoggia M, Wang G, Pershagen G, Gruzieva O, Melén E. Associations of improved air quality with lung function growth from childhood to adulthood: the BAMSE study. Eur Respir J. 2023 May 5;61(5):2201783. doi: 10.1183/13993003.01783-2022. PMID: 36822631; PMCID: PMC10160798.
DOI: 10.1183/13993003.01783-2022
Google Scholar
[36]
Álvarez Aldegunde, José & Quiñones-Bolaños, Edgar & Fernández Sánchez, Adrián & Saba, Manuel & Caraballo, Luis. (2023). Environmental and Health Benefits Assessment of Reducing PM 2.5 Concentrations in Urban Areas in Developing Countries: Case Study Cartagena de Indias. Environments. 10.
DOI: 10.3390/environments10030042
Google Scholar
[37]
S. Aggrawal and B. Bhushan, "Machine Learning for Air Pollution," 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 2023, pp.1-6.
DOI: 10.1109/ViTECoN58111.2023.10157028
Google Scholar
[38]
Shivakumar, Sheethal & Shastry, K Aditya & Singh, Simranjith & Pasha, Salman & Vinay, B. & Sushma, V.. (2022). Machine Learning-Based Air Pollution Prediction.
DOI: 10.1007/978-981-16-3342-3_2
Google Scholar
[39]
Ayus, I., Natarajan, N. & Gupta, D. Comparison of machine learning and deep learning techniques for the prediction of air pollution: a case study from China. Asian J. Atmos. Environ 17, 4 (2023)
DOI: 10.1007/s44273-023-00005-w
Google Scholar
[40]
Vm, Madhuri, Samyama Gunjal Gh and Savitha Kamalapurkar. "Air Pollution Prediction Using Machine Learning Supervised Learning Approach." International Journal of Scientific & Technology Research 9 (2020): 118-123.
Google Scholar
[41]
Venkatraman, S. and Sivanesh, S. (2023) "Air Quality Prediction using Ensemble Voting based Deep Learning with Mud Ring Algorithm for Intelligent Transportation Systems", Global NEST Journal, 25(6). Available at:.
DOI: 10.30955/gnj.004810
Google Scholar
[42]
Cooper Loughlin, Dimitris Manolakis, Vinay Ingle, "Multivariate air quality time series analysis via a recurrent variational deep learning model," Proc. SPIE 12525, Geospatial Informatics XIII, 125250G (15 June 2023);
DOI: 10.1117/12.2663201
Google Scholar
[43]
Singh T, Sharma N, Satakshi, Kumar M. Analysis and forecasting of air quality index based on satellite data. Inhal Toxicol. 2023 Jan-Feb;35(1-2):24-39. doi: 10.1080/08958378.2022.2164388. Epub 2023 Jan 5. PMID: 36602767.
DOI: 10.1080/08958378.2022.2164388
Google Scholar
[44]
Hossain, Mohammed Tahmid & Hossain, Afra & Meem, Sabrina & Monir, Md Fahad & Miah, Md Saef Ullah & Sarwar, Talha. (2023). Impact of COVID-19 Lockdowns on Air Quality in Bangladesh: Analysis and AQI Forecasting with Support Vector Regression. 1-6.
DOI: 10.1109/INCET57972.2023.10169997
Google Scholar
[45]
Bhatti, M. A., Song, Z., Bhatti, U. A., & Ahmad, N. (2023). Predicting the Impact of Change in Air Quality Patterns Due to COVID-19 Lockdown Policies in Multiple Urban Cities of Henan: A Deep Learning Approach. Atmosphere, 14(5), 902
DOI: 10.3390/atmos14050902
Google Scholar
[46]
Hina, S., Saleem, F., and Ibrahim, M.: COVID-19 Pandemic Hopeful Prospect: Air Quality Improvements over Indo-Gigantic Plain, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1112, https://doi.org/10.5194/egusphere-egu23-1112, 2023.
DOI: 10.5194/egusphere-egu23-1112
Google Scholar
[47]
Bhattarai, H., Tai, A. P. K., Val Martin, M., & Yung, D. H. Y. (2024). Impacts of changes in climate, land use, and emissions on global ozone air quality by mid-21st century following selected Shared Socioeconomic Pathways. The Science of the total environment, 906, 167759
DOI: 10.1016/j.scitotenv.2023.167759
Google Scholar
[48]
Eastham, S. D., Monier, E., Rothenberg, D., Paltsev, S., & Selin, N. E. (2023). Rapid Estimation of Climate-Air Quality Interactions in Integrated Assessment Using a Response Surface Model. ACS environmental Au, 3(3), 153–163
DOI: 10.1021/acsenvironau.2c00054
Google Scholar
[49]
van Garderen, L., Feser, F., Mindlin, J., and Shepherd, T.: Attributing Extreme Weather Events and Mean Climate Change using Dynamical and Event Storylines, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-17183, https://doi.org/10.5194/egusphere-egu23-17183, 2023.
DOI: 10.5194/egusphere-egu23-17183
Google Scholar
[50]
Turnau, R., Robinson, W. A., Lackmann, G. M., & Michaelis, A. C. (2022). Model projections of increased severity of heat waves in Eastern Europe. Geophysical Research Letters, 49, e2022GL100183
DOI: 10.1029/2022GL100183
Google Scholar
[51]
Zeng, G., Williams, J. E., Fisher, J. A., Emmons, L. K., Jones, N. B., Morgenstern, O., Robinson, J., Smale, D., Paton-Walsh, C., and Griffith, D. W. T.: Multi-model simulation of CO and HCHO in the Southern Hemisphere: comparison with observations and impact of biogenic emissions, Atmos. Chem. Phys., 15, 7217–7245, https://doi.org/10.5194/acp-15-7217-2015, 2015.
DOI: 10.5194/acp-15-7217-2015
Google Scholar
[52]
De Sario, M., Katsouyanni, K., & Michelozzi, P. (2013). Climate change, extreme weather events, air pollution and respiratory health in Europe. The European respiratory journal, 42(3), 826–843
DOI: 10.1183/09031936.00074712
Google Scholar
[53]
Su, Y. (2020). Prediction of air quality based on Gradient Boosting Machine Method. 2020 International Conference on Big Data and Informatization Education (ICBDIE), 395-397.
DOI: 10.1109/icbdie50010.2020.00099
Google Scholar
[54]
A. A. Varghese, J. Krishnadas and A. M. Antony, "Robust Air Quality Prediction Based on Regression and XGBoost," 2023 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), Ernakulam, India, 2023, pp.1-6.
DOI: 10.1109/ACCTHPA57160.2023.10083379
Google Scholar
[55]
Central Pollution Control Board (CPCB, 2022). Air quality data (2019 - 2022). https://cpcb.nic.in/
Google Scholar