Implementation of Boosting Algorithms in Predicting Air Quality Index of South Indian Cities

Article Preview

Abstract:

This paper addresses the critical issue of atmospheric pollution in India, underscoring the necessity for precise predictive analytics of Air Quality Index (AQI) data for effective pollution control. The study delineates the etiological factors and substantial health hazards correlated with air pollution, encompassing elevated mortality rates, respiratory and cardiovascular diseases, and mental health complications. The AQI is presented as a necessary component for converting complex air quality data into a single, easily understandable metric. This research aims to facilitate effective pollution control through real-time AQI monitoring and precise future predictions for timely interventions. To attain this objective, the research employs the use of boosting algorithms, like extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and an ensemble stack of XGBoost and LightGBM for AQI prediction of South Indian cities. The performance of these models was found noteworthy, with high R² scores and low root-mean-squared error (RMSE) scores, exhibiting its efficacy in providing highly accurate results. By merging technological innovation with machine learning capabilities, the research aims to equip decision-makers with actionable insights for informed pollution mitigation strategies, promoting a more sustainable environment. Keywords: Air Pollution, Air Quality Index (AQI), XGBoost, LightGBM, Ensemble Stack

You have full access to the following eBook

Info:

Periodical:

Pages:

99-115

Citation:

Online since:

April 2025

Export:

Share:

Citation:

* - Corresponding Author

[1] Outa, J.O., Kowenje, C.O., Plessl, C. et al. Distribution of arsenic, silver, cadmium, lead and other trace elements in water, sediment and macrophytes in the Kenyan part of Lake Victoria: spatial, temporal and bioindicative aspects. Environ Sci Pollut Res 27, 1485–1498 (2020).

DOI: 10.1007/s11356-019-06525-9

Google Scholar

[2] Mehndiratta, M. M., & Garg, D. (2023). Beware! We are Skating on a Thin Ice: Air Pollution is a Killer. The Journal of the Association of Physicians of India, 71(7), 11–12.

Google Scholar

[3] Addisu, A. (2023). Indoor Air Pollution. IntechOpen

DOI: 10.5772/intechopen.110587

Google Scholar

[4] Gaikwad, Asha & Shivhare, Niharika. (2020). INDOOR AIR POLLUTION-A Threat.

Google Scholar

[5] Kim Y, Radoias V. Severe Air Pollution Exposure and Long-Term Health Outcomes. Int J Environ Res Public Health. 2022 Oct 27;19(21):14019. doi: 10.3390/ijerph192114019. PMID: 36360899; PMCID: PMC9655248.

DOI: 10.3390/ijerph192114019

Google Scholar

[6] Faustini, Annunziata. (2021). Air Pollutants Short-Term and Long Term Effects.

DOI: 10.1016/B978-0-08-102723-3.00181-5

Google Scholar

[7] Cucchi I, Chanel O. Long-term health and economic impacts of air pollution in Greater Geneva. JAPH. 2023;8(2):135-156.

DOI: 10.18502/japh.v8i2.12914

Google Scholar

[8] Bostan, Pınar. (2022). Health effects of outdoor air pollutants. World Journal of Environmental Research. 12. 70-81.

DOI: 10.18844/wjer.v12i2.8095

Google Scholar

[9] A. S. Sofia, S. V. J, S. K, S. K and T. M, "APD - ML: Air Pollution Detection Using Machine Learning Algorithms," 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 2023, pp.1-5.

DOI: 10.1109/ViTECoN58111.2023.10157131

Google Scholar

[10] S. Rani, P. Kumari and S. K. Singh, "Machine Learning-based Multiclass Classification Model for Effective Air Quality Prediction," 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), London, United Kingdom, 2023, pp.1-7.

DOI: 10.1109/GlobConET56651.2023.10149947

Google Scholar

[11] Sharma, Meghna & Gupta, Eishita & D., Viji. (2023). Air Quality Index (AQI) Prediction using Automated Machine Learning with TPOT-ANN*. 1-9.

DOI: 10.1109/RAEEUCCI57140.2023.10134166

Google Scholar

[12] Ghadei, Madhusmita. (2018). Amaravati - A City Reborn, Journey Towards a World-Class Smart City. 15-29.

DOI: 10.1007/978-3-319-61645-2_2

Google Scholar

[13] N., V., Krishna, Prasad., P., Sasikala., N., Madhavi., T., Anil, Babu., Thomaskutty, Mathew., S., Ramesh., M., S., S., R., K., N., Sarma., B., Ramesh, Naik. (2020). Analysis of seasonal variation in particulate matter and relevant pollutants for three stations of andhra pradesh (India) during the period (2018-2020) using multivariate regression analysis

DOI: 10.37418/AMSJ.9.12.35

Google Scholar

[14] Usharani, Bhimavarapu. "Long-Term Effects of Climate Change on Housing Market analytics in Amaravati, Capital of Andhra Pradesh in India, Using Machine Learning." In Handbook of Research on Climate Change and the Sustainable Financial Sector, edited by Odunayo Magret Olarewaju and Idris Olayiwola Ganiyu, 331-352. Hershey, PA: IGI Global, 2021

DOI: 10.4018/978-1-7998-7967-1.ch020

Google Scholar

[15] Ghosh, Debreka & Sarkar, Ujjaini. (2015). Analysis of the photochemical production of ozone using Tropospheric Ultraviolet-Visible (TUV) Radiation Model in an Asian megacity. Air Quality, Atmosphere & Health. 9.

DOI: 10.1007/s11869-015-0346-3

Google Scholar

[16] Lupaşcu, A., Otero, N., Minkos, A., and Butler, T.: Attribution of surface ozone to NOx and volatile organic compound sources during two different high ozone events, Atmos. Chem. Phys., 22, 11675–11699, https://doi.org/10.5194/acp-22-11675-2022, 2022.

DOI: 10.5194/acp-22-11675-2022

Google Scholar

[17] Dhanya, G., T. S. Pranesha, K. Nagaraja, D. M. Chate, and G. Beig. 2022. "Variation of Ozone, Carbon Monoxide, and Oxides of Nitrogen at Bengaluru, India". Journal of Scientific Research 14 (2):459-70.

DOI: 10.3329/jsr.v14i2.55626

Google Scholar

[18] Prabhu, V., Singh, P., Kulkarni, P. et al. Characteristics and health risk assessment of fine particulate matter and surface ozone: results from Bengaluru, India. Environ Monit Assess 194, 211 (2022)

DOI: 10.1007/s10661-022-09852-6

Google Scholar

[19] Peter, Anju & Raj, Monish & Gangadharan, Praveena & Pavizham, Athira & SM, Shiva Nagendra. (2023). Trends, Extreme Events and Long-term Health Impacts of Particulate Matter in a Southern Indian Industrial Area. Water, Air, & Soil Pollution. 234.

DOI: 10.1007/s11270-023-06302-y

Google Scholar

[20] Yadav, Rahul Kant & Gadhavi, Harish & Arora, Akanksha & Mohbey, K. & Kumar, Sunil & Lal, Shyam & Mallik, Chinmay. (2023). Relation between PM 2.5 and O 3 over Different Urban Environmental Regimes in India.

DOI: 10.3390/urbansci7010009

Google Scholar

[21] Gupta, Jyothi. (2023). Statistical Assessment of Spatial Autocorrelation on Air Quality in Bengaluru, India. 17. 12.

DOI: 10.1007/978-3-031-31164-2_21

Google Scholar

[22] P. Sujatha, Jai Shirisha PVS, Krishna Nivash J. and P.V.S. Janardhanam (2023); IMPACT OF URBANIZATION IN CHENNAI Int. J. of Adv. Res. 11 (May). 851-871 (ISSN 2320-5407). www.journalijar.com

DOI: 10.21474/ijar01/16939

Google Scholar

[23] Nirmala, Muthu & Mallika, M.. (2023). Trend Analysis of Air Quality Index in Chennai, India.

DOI: 10.9734/bpi/npgees/v6/18578D

Google Scholar

[24] Karuppannan, Shankar & Narasimhan, C. Lakshmi & Hussain, Sajjad & Almohamad, Hussein & Abdullah, Ahmed & Dughairi, Ahmed & Al-Mutiry, Motrih & Alkayyadi, Ibrahim & Abdo, Hazem & Li, Chi & Lu, Xiao & Zhang, Yuqiang & K, Manikanda Bharath & Natesan, Usha. (2022). Multivariate Urban Air Quality Assessment of Indoor and Outdoor Environments at Chennai Metropolis in South India. Atmosphere.

DOI: 10.3390/atmos13101627

Google Scholar

[25] Pillai, Priyadarshini & Taylor, George. (2023). Evaluating Air Pollution Tolerance Index (APTI) of Some Plants Species in Bengaluru City. Advances in Zoology and Botany. 11. 139-149.

DOI: 10.13189/azb.2023.110206

Google Scholar

[26] Maring, Teshilring & Suman, Dr & Jha, Ajay & Kumar, Naresh & Pandey, Shri. (2023). Airborne Particulate Matter and Associated Heavy Metals: A Review. Macromolecular Symposia. 407.

DOI: 10.1002/masy.202100487

Google Scholar

[27] Jung, Miyeon, Daegon Cho, and Kwangsoo Shin. 2019. "The Impact of Particulate Matter on Outdoor Activity and Mental Health: A Matching Approach" International Journal of Environmental Research and Public Health 16, no. 16: 2983

DOI: 10.3390/ijerph16162983

Google Scholar

[28] Thanusree, G & Kiran, M & Reddy, A & Rangaswamy, Prem Sudha & Parida, Arati & Aakanksha, Keesagani & Reddy, G. (2023). Air Quality Monitoring at Heavy Traffic Zone in Hyderabad. 2581-9429.

DOI: 10.48175/IJARSCT-9526

Google Scholar

[29] Kumar, Athur & Kalyan, Kumar & Rama, Krishna. (2023). Assessment of dispersion of pollutants due to Industrial Sources using AERMOD near Hyderabad city, India. Research Journal of Chemistry and Environment. 27. 114-121.

DOI: 10.25303/2702rjce1140121

Google Scholar

[30] C. Wieland and V. Pankratius, "Regressor-Rater: A Resource-Efficient One-Shot Learner For Estimating Prediction Intervals," 2023 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 2023, pp.0127-0133.

DOI: 10.1109/AIIoT58121.2023.10174567

Google Scholar

[31] Sukuman, Thanakon & Ueda, Kayo & Sujaritpong, Sarunya & Praekunatham, Hirunwut & Punnasiri, Kornwipa & Wimuktayon, Tuangsit & Prapaspongsa, Trakarn. (2023). Health Impacts from PM2.5 Exposure Using Environmental Epidemiology and Health Risk Assessment: A Review. Applied Environmental Research. 1-14.

DOI: 10.35762/AER.2023010

Google Scholar

[32] Garcia, Amanda & Helena, Eduarda & De Falco, Anna & Ribeiro, Joaquim & Gioda, Carolina. (2023). Toxicological Effects of Fine Particulate Matter (PM2.5): Health Risks and Associated Systemic Injuries—Systematic Review. Water, Air, & Soil Pollution. 234.

DOI: 10.1007/s11270-023-06278-9

Google Scholar

[33] Li, Ding & Xiao, Han & Ma, Shuang & Zhang, Jiangxue. (2021). Health Benefits of Air Quality Improvement: Empirical Research Based on Medical Insurance Reimbursement Data. SSRN Electronic Journal.

DOI: 10.2139/ssrn.3952375

Google Scholar

[34] Aithal, Sathya & Sachdeva, Ishaan & Kurmi, Om. (2023). Air quality and respiratory health in children. Breathe. 19. 230040.

DOI: 10.1183/20734735.0040-2023

Google Scholar

[35] Yu Z, Merid SK, Bellander T, Bergström A, Eneroth K, Georgelis A, Hallberg J, Kull I, Ljungman P, Klevebro S, Stafoggia M, Wang G, Pershagen G, Gruzieva O, Melén E. Associations of improved air quality with lung function growth from childhood to adulthood: the BAMSE study. Eur Respir J. 2023 May 5;61(5):2201783. doi: 10.1183/13993003.01783-2022. PMID: 36822631; PMCID: PMC10160798.

DOI: 10.1183/13993003.01783-2022

Google Scholar

[36] Álvarez Aldegunde, José & Quiñones-Bolaños, Edgar & Fernández Sánchez, Adrián & Saba, Manuel & Caraballo, Luis. (2023). Environmental and Health Benefits Assessment of Reducing PM 2.5 Concentrations in Urban Areas in Developing Countries: Case Study Cartagena de Indias. Environments. 10.

DOI: 10.3390/environments10030042

Google Scholar

[37] S. Aggrawal and B. Bhushan, "Machine Learning for Air Pollution," 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 2023, pp.1-6.

DOI: 10.1109/ViTECoN58111.2023.10157028

Google Scholar

[38] Shivakumar, Sheethal & Shastry, K Aditya & Singh, Simranjith & Pasha, Salman & Vinay, B. & Sushma, V.. (2022). Machine Learning-Based Air Pollution Prediction.

DOI: 10.1007/978-981-16-3342-3_2

Google Scholar

[39] Ayus, I., Natarajan, N. & Gupta, D. Comparison of machine learning and deep learning techniques for the prediction of air pollution: a case study from China. Asian J. Atmos. Environ 17, 4 (2023)

DOI: 10.1007/s44273-023-00005-w

Google Scholar

[40] Vm, Madhuri, Samyama Gunjal Gh and Savitha Kamalapurkar. "Air Pollution Prediction Using Machine Learning Supervised Learning Approach." International Journal of Scientific & Technology Research 9 (2020): 118-123.

Google Scholar

[41] Venkatraman, S. and Sivanesh, S. (2023) "Air Quality Prediction using Ensemble Voting based Deep Learning with Mud Ring Algorithm for Intelligent Transportation Systems", Global NEST Journal, 25(6). Available at:.

DOI: 10.30955/gnj.004810

Google Scholar

[42] Cooper Loughlin, Dimitris Manolakis, Vinay Ingle, "Multivariate air quality time series analysis via a recurrent variational deep learning model," Proc. SPIE 12525, Geospatial Informatics XIII, 125250G (15 June 2023);

DOI: 10.1117/12.2663201

Google Scholar

[43] Singh T, Sharma N, Satakshi, Kumar M. Analysis and forecasting of air quality index based on satellite data. Inhal Toxicol. 2023 Jan-Feb;35(1-2):24-39. doi: 10.1080/08958378.2022.2164388. Epub 2023 Jan 5. PMID: 36602767.

DOI: 10.1080/08958378.2022.2164388

Google Scholar

[44] Hossain, Mohammed Tahmid & Hossain, Afra & Meem, Sabrina & Monir, Md Fahad & Miah, Md Saef Ullah & Sarwar, Talha. (2023). Impact of COVID-19 Lockdowns on Air Quality in Bangladesh: Analysis and AQI Forecasting with Support Vector Regression. 1-6.

DOI: 10.1109/INCET57972.2023.10169997

Google Scholar

[45] Bhatti, M. A., Song, Z., Bhatti, U. A., & Ahmad, N. (2023). Predicting the Impact of Change in Air Quality Patterns Due to COVID-19 Lockdown Policies in Multiple Urban Cities of Henan: A Deep Learning Approach. Atmosphere, 14(5), 902

DOI: 10.3390/atmos14050902

Google Scholar

[46] Hina, S., Saleem, F., and Ibrahim, M.: COVID-19 Pandemic Hopeful Prospect: Air Quality Improvements over Indo-Gigantic Plain, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1112, https://doi.org/10.5194/egusphere-egu23-1112, 2023.

DOI: 10.5194/egusphere-egu23-1112

Google Scholar

[47] Bhattarai, H., Tai, A. P. K., Val Martin, M., & Yung, D. H. Y. (2024). Impacts of changes in climate, land use, and emissions on global ozone air quality by mid-21st century following selected Shared Socioeconomic Pathways. The Science of the total environment, 906, 167759

DOI: 10.1016/j.scitotenv.2023.167759

Google Scholar

[48] Eastham, S. D., Monier, E., Rothenberg, D., Paltsev, S., & Selin, N. E. (2023). Rapid Estimation of Climate-Air Quality Interactions in Integrated Assessment Using a Response Surface Model. ACS environmental Au, 3(3), 153–163

DOI: 10.1021/acsenvironau.2c00054

Google Scholar

[49] van Garderen, L., Feser, F., Mindlin, J., and Shepherd, T.: Attributing Extreme Weather Events and Mean Climate Change using Dynamical and Event Storylines, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-17183, https://doi.org/10.5194/egusphere-egu23-17183, 2023.

DOI: 10.5194/egusphere-egu23-17183

Google Scholar

[50] Turnau, R., Robinson, W. A., Lackmann, G. M., & Michaelis, A. C. (2022). Model projections of increased severity of heat waves in Eastern Europe. Geophysical Research Letters, 49, e2022GL100183

DOI: 10.1029/2022GL100183

Google Scholar

[51] Zeng, G., Williams, J. E., Fisher, J. A., Emmons, L. K., Jones, N. B., Morgenstern, O., Robinson, J., Smale, D., Paton-Walsh, C., and Griffith, D. W. T.: Multi-model simulation of CO and HCHO in the Southern Hemisphere: comparison with observations and impact of biogenic emissions, Atmos. Chem. Phys., 15, 7217–7245, https://doi.org/10.5194/acp-15-7217-2015, 2015.

DOI: 10.5194/acp-15-7217-2015

Google Scholar

[52] De Sario, M., Katsouyanni, K., & Michelozzi, P. (2013). Climate change, extreme weather events, air pollution and respiratory health in Europe. The European respiratory journal, 42(3), 826–843

DOI: 10.1183/09031936.00074712

Google Scholar

[53] Su, Y. (2020). Prediction of air quality based on Gradient Boosting Machine Method. 2020 International Conference on Big Data and Informatization Education (ICBDIE), 395-397.

DOI: 10.1109/icbdie50010.2020.00099

Google Scholar

[54] A. A. Varghese, J. Krishnadas and A. M. Antony, "Robust Air Quality Prediction Based on Regression and XGBoost," 2023 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), Ernakulam, India, 2023, pp.1-6.

DOI: 10.1109/ACCTHPA57160.2023.10083379

Google Scholar

[55] Central Pollution Control Board (CPCB, 2022). Air quality data (2019 - 2022). https://cpcb.nic.in/

Google Scholar