Theoretical Study on CO2/SO2 Absorption Using N- Alkylethylenediaminium Protic Ionic Liquid

Article Preview

Abstract:

The protic ionic liquids (PILs) comprising with N-2-ethylhexylethylenediaminium cation (HEtHex+) and bis (trifluoromethanesulfonate) imide anion (TFSA-) forming [HEtHex][TFSA] which has two amines in the polar group and available to absorbs acid gases such as CO2 and SO2. In order to study the CO2/SO2 absorption mechanism of [HEtHex][TFSA], the stable configurations of [HEtHex][TFSA]-nCO2 (n=1, 2, 3, 4) and [HEtHex][TFSA]-nSO2 (n=1, 2, 4, 6) are investigated using the density functional theory at the M06-2X/6-311G (d, p) level, then the interaction energy, molecular vibration frequency, second-order perturbation energy, electron density and Laplace value are calculated and analysed for the most stable configurations. The results show that N–H...O type weak or medium hydrogen bonding are mainly formed between [HEtHex][TFSA] and CO2/SO2 molecules. The hydrogen bonding interaction is stronger for [HEtHex][TFSA]-nSO2 comparing with [HEtHex][TFSA]-nCO2 and increases with increasing the number of CO2/SO2 molecules.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-62

Citation:

Online since:

April 2023

Authors:

Export:

Share:

Citation:

* - Corresponding Author

[1] C.M. Wang, X.Y. Luo, X. Zhu, G.K. Cui, D. Jiang, D.S. Deng, L. Haoran, D. Sheng, The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids, J. RSC Advances. 36 (3) (2013) 15518–15527.

DOI: 10.1039/c3ra42366b

Google Scholar

[2] C.H. Yu, C.H. Huang, C.S. Tan, A review of CO2 capture by absorption and adsorption, Aerosol Air Qual Res. 12 (5) (2012) 745–769.

DOI: 10.4209/aaqr.2012.05.0132

Google Scholar

[3] P.A. Hunt, Quantum chemical modeling of hydrogen bonding in ionic liquids, Chem. Soc. Rev. 44 (2015) 1257–1288.

Google Scholar

[4] K.S. Egorova, E.G. Gordeev, V.P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine, Chem. Rev. 117 (2017) (10) 7132-7189.

DOI: 10.1021/acs.chemrev.6b00562

Google Scholar

[5] R.L. Vekariya, A review of ionic liquids: applications towards catalytic organic transformations, J. Mol. Liq. 227 (2017) 44–60.

DOI: 10.1016/j.molliq.2016.11.123

Google Scholar

[6] S.J. Zeng, X.P. Zhang, L. Bai, X.C. Zhang, H. Wang, J.J. Wang, D. Bao, M.D. Li, X.Y. Liu, S.J. Zhang, Ionic liquid-based CO2 capture systems: structure, interaction and process, Chem. Rev. 117 (2017) (14) 9625–9673.

DOI: 10.1021/acs.chemrev.7b00072

Google Scholar

[7] V. Plechkovan, K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev. 37 (2008) 123–150.

Google Scholar

[8] P. Wasserscheid, T. Welton, Ionic liquids in synthesis, Wiley-VCH, New York, 2007.

Google Scholar

[9] D. Fu, P. Zhang, L.X. Du, Progress in CO2 capture using amino acid ionic liquid promoted amine aqueous solutions, Energy Sci. Eng. 30 (2014) (3) 1–4.

Google Scholar

[10] S. Saravanamurugan, A.J. Kunov-Kruse, R. Fehrmann, A. Riisager, Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO2, Chem. Sus. Chem. 7 (3) (2014) 897–902.

DOI: 10.1002/cssc.201300691

Google Scholar

[11] I. Niedermaier, M. Bahlmann, C. Papp, C. Kolbeck, W. Wei, S.K. Calerón, M. Grabau, P.S. Schulz, P. Wasserscheid, H.P. Steinrück, F. Maier, Carbon dioxide capture by an amine functionalized ionic liquid: fundamental differences of surface and bulk behavior, J. Am. Chem. Soc. 136 (1) (2014):436-41.

DOI: 10.1021/ja410745a

Google Scholar

[12] J.S. Wilkes, A short history of ionic liquids—from molten salts to neoteric solvents, Green Chemistry. 4(2) (2002) 73-80.

DOI: 10.1039/b110838g

Google Scholar

[13] T.L. Greaves, C.J. Drummond, Protic ionic liquids:  properties and applications. Chem. Rev. 108 (1) (2008) 206-237.

DOI: 10.1021/cr068040u

Google Scholar

[14] A.R. Katritzky, R. Jain, A. Lomaka, R. Petrukhin, M. Karelson, A.E. Visser, R.D. Rogers, Correlation of the melting points of potential ionic liquids (imidazolium bromides and benzimidazolium bromides) using the CODESSA program. J Chem Inf Model. 42 (2) (2002) 225-231.

DOI: 10.1021/ci0100494

Google Scholar

[15] Z. liu, R. Liu, E. Hua, J.L. Yi, Water effects on physicochemical properties of protic ionic liquid with N-hexylamine as cation and bis(trifluoromethylsulfonyl) imide as anion, Chem. Eng. J. 40 (4) (2021) 2270-2277.

DOI: 10.1007/s10953-021-01067-6

Google Scholar

[16] X.C. Zhang, Y. Xu, E. Hua, Hydrogen bonding study on protic ionic liquids composed of N-alkylethylenediaminium cations with bis(trifluoromethylsulfonyl)imideanion, Journal of Shihezi University (Natural Science). 38 (5) (2020) 540-547.

DOI: 10.1016/j.mtcomm.2021.102633

Google Scholar

[17] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and other functionals, Theor Chem Acc. 120 (1) (2008) 215-241.

DOI: 10.1007/s00214-007-0310-x

Google Scholar

[18] R.G. Parr, W. Yang, Density-functional theory of atoms and molecules, Oxford University Press, New York, 1989.

Google Scholar

[19] E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 124 (6) (2002) 926-7.

DOI: 10.1021/ja017593d

Google Scholar

[20] W. Wu, B.X. Han, H.X. Gao, Z.M. Liu, T. Jiang, J. Huang, Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew. Chem. Int. Ed. 43 (18) (2004) 2415-7.

DOI: 10.1002/anie.200353437

Google Scholar

[21] Y WU, T T ZHANG, N YU, Interaction between 1-Ethyl-3-Methyl-Imidazolium cation and asparagine anion, ACTA PHYS-CHIM SIN. 25 (08) (2009) 1689-1696.

DOI: 10.3866/pku.whxb20090823

Google Scholar

[22] R.F.W. Bader, Atom in Molecules: A Quantum Theory. Oxford University Press, Clarendon Press, Oxford, 1990.

Google Scholar

[23] J.M. Campo, J.L. Gázquez, R.J. Alvarez-Mendez, A. Vela, The reduced density gradient in atoms. Int. J. Quantum Chem. 112 (22) (2012) 3594-3598.

DOI: 10.1002/qua.24241

Google Scholar

[24] H. Roohi, K. Ghauri, Exploring physicochemical properties of the nanostructured Tunable Aryl Alkyl Ionic Liquids (TAAILs). J. Mol. Liq. 209 (2015) 14-24.

DOI: 10.1016/j.molliq.2015.05.001

Google Scholar

[25] S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies: some procedures with reduced errors, J. Mol. Phys. 19 (1970) 553–566.

DOI: 10.1080/00268977000101561

Google Scholar

[26] H. Watanabe, H. Doi, S. Saito, M. Matsugami, K. Fujii, R. Kanzaki, Y. Kameda, Y. Umebayashi, Hydrogen bond in imidazolium based protic and aprotic ionic liquids, J. Mol. Liq. 217 (2016) (217) 35–42.

DOI: 10.1016/j.molliq.2015.08.005

Google Scholar

[27] J.A. George. An introduction to hydrogen bonding, Oxford University Press,1997.

Google Scholar

[28] A.E. Reed, L.A.F. Curtiss, Weinhold intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88(6) (1988) 899–926.

DOI: 10.1021/cr00088a005

Google Scholar

[29] P.A. Hunt, C.R. Ashworth, R.P. Matthews R. Hydrogen bonding in ionic liquids, Chem. Soc. Rev. 44 (5) (2015) 1257-1288.

DOI: 10.1039/c4cs00278d

Google Scholar