[1]
S.M. Rump. "Algorithms for verified inclusions theory and practice". In Reliability in In R.E. Moore, editor, editor, volume 19 of Perspectives in Computing, page 109126. Academic Press, 1988, https: //doi.org/10.1016/B978 − 0 − 12 − 505630 − 4.50012 − 2
Google Scholar
[2]
E.Walter and M.Kieffer "Sur quelques idées fausses ayant des conséquences en identification". J. Européen des Systèmes Automatisés, 42(2) :181–210, (2008)
DOI: 10.3166/jesa.42.181-210
Google Scholar
[3]
N.J Carstensen and H. Madsen. Identification of waste water processes. PhD thesis, Technical University of Denmark Danmarks Tekniske Universitet, Administration Office for Study Pro grammes and Student Affairs Afdelingen for Uddannelse og Studerende, (1993)
Google Scholar
[4]
M.Henze, CPL.Grady Jr, W.Gujer, G.Marais, and T.Matsuo. Activated sludge model no.1 : Iaw prc scientific and technical report no. 1. IAWPRC, London, (1987)
Google Scholar
[5]
G.Olsson, B.Andersson, B.Hellstrom, H.Holmstrom, L.Einius, P.Vopatek. "Measurements data analysis and control methods in wastewater treatment plants state of the art and future trends". Water Science and Technology. 21(10/11), 1989, p.13331345. https: //doi.org/10.1016/B978 − 1 − 4832 − 8439 − 2.50130 − 9
DOI: 10.2166/wst.1989.0332
Google Scholar
[6]
D.Couillard and S.Zhu. "Control strategy for the activated sludge process under shock loading". Water Research, 26(5) :649–655, 1992. https : //doi.org/10.1016/0043 – 1354 (92) 90241 − U
DOI: 10.1016/0043-1354(92)90241-u
Google Scholar
[7]
N.Bhat, T.McAvoy, "Use of neural nets for dynamic modeling and control of chemical process systems" Computer and Chemical Engineering 14(5), 1990, p.573583. https : //doi.org/10.1016/0098 − 1354(90)87028 − N
DOI: 10.1016/0098-1354(90)87028-n
Google Scholar
[8]
A.Sorsa, R.Peltokangas, K.Leiviska." Real coded Genetic Algorithms and Nonlinear Parameter Identification", International IEEE Conference, Intelligent system.(2008)
DOI: 10.1109/IS.2008.4670495
Google Scholar
[9]
R.E. Moore, "Interval Analysis", Prentice Hall, Englewood Cliffs, New Jersey, 1966
DOI: 10.1126/science.158.3799.365
Google Scholar
[10]
E.Hansen and R.Greenberg. "An interval newton method". Applied Mathematics and Computation, 12(2): 89–98, 1983. https: //doi.org/10.1016/0096 − 3003(83)90001 − 2
DOI: 10.1016/0096-3003(83)90001-2
Google Scholar
[11]
A.Neumaier, "Interval Methods for Systems of Equations", Encyclopedia of Mathematics and its Application, Cambridge 1990,https : //doi.org/
DOI: 10.1002/zamm.19920721114
Google Scholar
[12]
X.Baguenard, M.Dao, L.Jaulin, and W.Khalil. "Méthodes ensemblistes pour l'étalonnage géométrique". Journal Europeen Des Systemes Automatises., 37(9): 1059– 1074, 2003.
DOI: 10.3166/jesa.37.1059-1074
Google Scholar
[13]
M.Milanese, and A.Vicino."Estimation theory forNonlinear models and set Membership Uncertainty". Automatica, 27(2),1991, p.403408 https: //doi.org/10.1016/0005 − 1098(91) 90090 − O
DOI: 10.1016/0005-1098(91)90090-o
Google Scholar
[14]
N.Noykova, T.Müller, M.Gyllenberg and J.Timmer " Quantitative Analysis of anaerobic waste water treatment, Identifiability and Parameter Estimation" Biotechnology and Bioengineering, Vol.78,n°1,2002, p.89103
DOI: 10.1002/bit.10179
Google Scholar
[15]
J.L. Gouzé, A.Rapaport, and M.Z. HadjSadok. "Interval observers for uncertain biological systems". Ecological modelling, 133(1): 45–56, 2000. https: //doi.org/10.1016/S0304–3800 (00)00279 − 9
DOI: 10.1016/s0304-3800(00)00279-9
Google Scholar
[16]
J.F. Pommaret, "Géométrie différentielle algébrique et théorie du contrôle".C.R. Acad. Sci. Paris Ser. I 302,1986, p.547–550.
Google Scholar
[17]
M.Fliess, "Quelques remarques sur les observateurs non lineaires". In: Proceedings Colloque GRETSI Traitement du Signal et des Images, GRETSI, 1987, p.169–172
DOI: 10.1007/bf02998758
Google Scholar
[18]
S.Diop, M.Fliess: "On nonlinear observability" In: Commault, C., NormandCyrot, D., Dion, J.M., Dugard, L., Fliess, M., Titli, A., Cohen, G., Benveniste, A., Landau, I.D. (eds.). Proceedings of the European Control Conference, Hermes, Paris, 1991, p.152–157
DOI: 10.1109/CDC.1991.261405
Google Scholar
[19]
S.Diop "From the geometry to the algebra of nonlinear observability" Contemporary Trends in Nonlinear Geometric Control Theory and its Applications, A. AnzaldoMeneses, B. Bonnard, J. P. Gauthier, and F. MonroyPerez, Eds. Singapore:
DOI: 10.1142/9789812778079_0012
Google Scholar
[20]
Diop S, Simeonov I "On the biomass specific growth rates estimation for anaerobic digestion using differential algebraic techniques". Int. J. BIO automation, 13(3), 2009, p.47 56, https : //doi.org/
DOI: 10.1016/j.ifacol.2017.08.2232
Google Scholar
[21]
E.Chorukova, S.Diop, I.Simeonov, "On differential algebraic decision methods for the estimation of anaerobic digestion models". Lecture Notes in Computer Science, Springer, Verlag, 2007, 4545, p.202 – 216, DOI : 10.1007/978 − 3 − 540 − 73433 − 815
DOI: 10.1007/978-3-540-73433-8_15
Google Scholar
[22]
T.Raissi."Méthodes ensemblistes pour l'estimation d'état et de paramètres". PhD thesis, Univer sité Paris XII Val de Marne, (2004)
Google Scholar
[23]
L.Jaulin, M.Kieffer, O.Didrit, and E.Walter."Applied Interval Analysis." Springer, 2001.
DOI: 10.1007/978-1-4471-0249-6_2
Google Scholar
[24]
T.Raissi, Nacim Ramdani, and Yves Candau."Parameter estimation for nonlinear continuous time systems in a bounded error context." In Decisionand Control, 2003. Proceedings. 42nd IEEE Conference on, volume 3, pages 2240–2245. IEEE, 2003.
DOI: 10.1109/cdc.2003.1272951
Google Scholar
[25]
I.Braems." Méthodes ensemblistes garanties pour l'estimation de grandeurs physiques". Phd of, 2002.
Google Scholar
[26]
J.Monod. "La technique de culture continue". Annales de l'Institut Pasteur 79: 390410, (1950)
Google Scholar
[27]
M.Dumont. " Apports de la modélisation des interactions pour compréhension fonctionnelle d'un écosystème: application à des bactéries nitrifiantes en chémostat" (Doctoral dissertation, Mont pellier 2). (2008)
Google Scholar
[28]
S.Borsali "Algebraic method and LSCR technique for estimating the parameters of a bioreactor". J. Fundam. Appl. Sci., 2020, 12(2), 683699
DOI: 10.4314/jfas.v12i2.11
Google Scholar