Foundations of Materials Science and Engineering

ISSN: 2297-816X

Main Themes

Edited by: Nantakan Muensit
Online since: February 2011
Description: Volume is indexed by Thomson Reuters BCI (WoS).
The purpose of this book is to present the current state of knowledge in the field of energy harvesting using piezoelectric and pyroelectric materials. The book is addressed to students and academics engaged in research in the fields of energy harvesting, material sciences and engineering. Scientists and engineers who are working in the area of energy conservation and renewable energy resources should find it useful as well. Explanations of fundamental physical properties such as piezoelectricity and pyroelectricity are included to aid the understanding of the non-specialist. Specific technologies and particular applications are also presented. This book is divided into two parts, each subdivided into chapters. Part I concerns fundamentals. Chapter 1 reports the discoveries, standard issues and various materials involved with energy harvesting. Chapter 2 presents electromechanical models enabling an understanding of how energy harvesting systems behave. The vibration theory and designs for various piezoelectric energy harvesting structures are addressed in Chapter 3. Chapter 4 describes the analytical expressions for the energy flow in piezoelectric energy harvesting systems, in particular, with cymbal and flexible transducers. A description of the conversion enhancement for powering low-energy consumption devices is presented in Chapter 5. Part II concerns Applications and Case Studies. It begins with Chapter 6, in which the principles and applications of piezoelectric nanogenerators are reported. Chapter 7 describes the utilization of energy harvesting from low-frequency energy sources. There are more ways to use vibrational energy than waste heat. However, Chapter 8 presents the fundamentals of an important application of heat conversion with a copolymer. Finally, commercial energy harvesting products and a technological forecast are provided in Chapter 9.


Edited by: Yuri I. Sucharev
Online since: September 2010
Description: Volume is indexed by Thomson Reuters BCI (WoS).
The importance of coherent chemistry, that is, the chemistry of periodic oscillatory processes, is increasing at a rapid rate in specific chemical disciplines. While being perfectly understood and highly developed in the fields of physical chemistry, chemical physics and biological chemistry, the periodic developmental paradigm of processes and phenomena still remains poorly developed and misunderstood in classical inorganic chemistry and related branches, such as colloid chemistry. The probability is that we miss subtle colloid chemical phenomena that could be of utmost importance if taken into consideration when catalysis or adsorption is involved. The author here reveals all of the astonishing vistas that periodic wave paradigms open up to researchers in certain colloid chemical systems, and will doubtless stimulate researchers to look at them in a new light.


Online since: April 2010
Description: Volume is indexed by Thomson Reuters BCI (WoS).
The aim of this book is to develop, in the reader, the necessary skills required for designing materials, components and structures so as to resist fracture and failure in engineering applications. In order to achieve this objective, the authors have adopted a combined materials science-fracture mechanics-design approach. Although the material covered is designed for an advanced undergraduate course in metallurgy/materials engineering, students coming from mechanical, civil or aerospace engineering backgrounds will also be able to use this text as a course/reference book. In addition to students, practising engineers and production mangers will also find this book very useful; particular with regard to designing components and machine elements so as to resist fracture and failure in critical applications.


Edited by: V.I. Dybkov
Online since: March 2010
Description: Volume is indexed by Thomson Reuters BCI (WoS).
This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate layer at the Al–Zr interface under isothermal conditions. The physico-chemical approach predicts that, in most cases, the number of compound layers should not exceed two; with the main factor, resulting in the appearance of additional layers, being crack formation due to thermal expansion and volume effects.


Edited by: Nasar Ali, Andreas Oechsner and Waqar Ahmed
Online since: February 2010
Description: Volume is indexed by Thomson Reuters BCI (WoS).
Carbon is an essential constituent element of all living organisms. A unique feature of carbon is the variety of forms that it can assume when two or more atoms bond. Carbon has thus attracted, and continues to attract, considerable R&D interest from researchers all over the world. The use of carbon in nanotechnology is a very promising area of research, and considerable government funding is being invested in carbon nanotechnology research.


Edited by: H.L.Kwok
Online since: January 2010
Description: Volume is indexed by Thomson Reuters BCI (WoS).
The electronic properties of solids have become of increasing importance in the age of information technology. The study of solids and materials, while having originated from the disciplines of physics and chemistry, has evolved independently over the past few decades. The classical treatment of solid-state physics, which emphasized classifications, theories and fundamental physical principles, is no longer able to bridge the gap between materials advances and applications. In particular, the more recent developments in device physics and technology have not necessarily been driven by new concepts in physics or new materials, but rather by the ability of engineers to control crystal structures and properties better via advances in crystal growth and patterning techniques. In many cases, new applications simply arise from the adaption of conventional ideas to interdisciplinary areas. One example is that of recent advances which rely heavily upon the availability of the sub-micron technology developed by the semiconductor industry. Another example is the emergence of nanotechnology.


Edited by: N. Sooraj Hussain & J. D. Santos
Online since: March 2010
Description: Volume is indexed by Thomson Reuters BCI (WoS).
The aim of “Biomaterials for Bone Regenerative Medicine” is to review extensively the latest developments in Biomaterials and their application to bone regeneration in vivo. Indeed, research on biomaterials and their novel applications is essential because of the health issues related to the aging population. A wide range of worldwide investigations is being undertaken by eminent scholars in order to develop further innovative materials for next-generation applications. In future, it is expected that a tissue engineering approach, associating novel biomaterials with stem cells, will be available for all types of bone defect.


Edited by: Wolfgang R. Fahrner and Stefan Schwertheim
Online since: July 2009
Description: It is well-known that fossil fuels are being rapidly depleted, and that atomic power is rejected by many people. As a consequence, there is a strong trend towards alternative sources such as wind, photovoltaics, solar heat and biomass. Strangely enough, quite another power source is generally neglected: namely, the thermoelectric generator (a device which converts heat, i.e. thermal energy, directly into electrical energy). The reason for this neglect is probably the low conversion efficiency, which is of the order of a few percent at most. However, there are two arguments in favor of the thermoelectric generator. Firstly, we might in effect be at the same point as we were in the early stages of photovoltaics use (it was only in 1954 that the first attractive solar cells, with efficiencies of around 4% were produced). Today, even large modules attain 20%. Secondly, the potential applications of thermoelectric generators are very tempting. Wherever heat is generated, it is amenable to electrical conversion. Energy harvesting via a thermoelectric generator may be accompanied by a further benefit: The use of a solar module inevitably leads to a drastic temperature rise. A thermoelectric generator reduces the temperature rise and therefore offers a double benefit.


Edited by: Prof. A.O. Akii Ibhadode
Online since: June 2009
Description: Volume is indexed by Thomson Reuters BCI (WoS).
This book presents a new method for the design of the precision dies used in cold-forging, extrusion and drawing processes. The method is based upon die expansion, and attempts to provide a clear-cut theoretical basis for the selection of critical die dimensions for this group of precision dies when the tolerance on product diameter (or thickness) is specified. It also presents a procedure for selecting the minimum-production-cost die from among a set of design alternatives.


Edited by: A.P. Savitskii
Online since: May 2009
Description: Volume is indexed by Thomson Reuters BCI (WoS).
The aim of this publication is to acquaint those readers who are interested in the fundamentals of powder materials sintering, with the latest scientific achievements which are important to its successful practice. The book contains new information, not previously known in the West, as well as offering a totally fresh view of this vital issue. The work discloses to western eyes a new scientific trend in the science of sintering systems with interacting components; a trend of which many experts are unaware. The new approach will considerably enrich and advance investigations into the theory and practice of sintering and aid their further development.


Showing 21 to 30 of 67 Main Themes