[1]
P. Montushi, Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications, Therapeutic Advances in Respiratory Disease, vol. 1, pp.5-23, (2007).
DOI: 10.1177/1753465807082373
Google Scholar
[2]
S. Lo Schiavo, L. Livoti, A. Calisto, A. Bramanti, N. Donato, M. Latino, et al., Novel sensing materials for breath analysis devices, in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, pp.670-673.
DOI: 10.1109/iembs.2010.5627198
Google Scholar
[3]
P. Montuschi, Exhaled breath condensate analysis in patients with COPD, Clinica Chimica Acta, vol. 356, pp.22-34, (2005).
DOI: 10.1016/j.cccn.2005.01.012
Google Scholar
[4]
J. B. McCafferty, T. A. B. dshaw, S. Tate, A. P. Greening, and J. A. I. nes, Effects of breathing pattern and inspired air conditio ns on breath condens ate volum e, pH, nitrite, and protein concentrations, Thorax vol. 59, p.694–698, (2004).
DOI: 10.1136/thx.2003.016949
Google Scholar
[5]
I. Horva, J. Hunt, and P. J. Barnes, Exhaled breath condensate: methodological recommendations and unresolved questions, Eur Respir J vol. 26, p.523–548, (2005).
DOI: 10.1183/09031936.05.00029705
Google Scholar
[6]
J. Stefanska, A. Sarniak, A. Wlodarczyk, M. Sokolowska, Z. Doniec, P. Bialasiewicz, et al., Hydrogen peroxide and nitrite reduction in exhaled breath condensate of COPD patients, Pulmonary Pharmacology & Therapeutics, vol. 25, pp.343-348, 10/ (2012).
DOI: 10.1016/j.pupt.2012.06.001
Google Scholar
[7]
J. -L. Lin, M. H. Bonnichsen, and P. S. Thomas, Standardization of exhaled breath condensate: effects of different de-aeration protocols on pH and H2O2 concentrations, Journal Of Breath Research, vol. 5, pp.1-5, (2011).
DOI: 10.1088/1752-7155/5/1/011001
Google Scholar
[8]
L. C. A. Amorim and Z. de L. Cardeal, Breath air analysis and its use as a biomarker in biological monitoring of occupational and environmental exposure to chemical agents, Journal of Chromatography B, vol. 853, pp.1-9, 6/15/ (2007).
DOI: 10.1016/j.jchromb.2007.03.023
Google Scholar
[9]
M. Zhou, Y. Liu, and Y. Duan, Breath biomarkers in diagnosis of pulmonary diseases, Clinica Chimica Acta, vol. 413, pp.1770-1780, 11/12/ (2012).
DOI: 10.1016/j.cca.2012.07.006
Google Scholar
[10]
A. Bruhn, L. Liberona, C. Lisboa, and G. Borzone, Limitations of the Technique to Determine Hydrogen Peroxide Levels in Exhaled Breath Condensate From Patients With Adult Respiratory Distress Syndrome, Arch Bronconeumol, vol. 41, pp.542-546, (2005).
DOI: 10.1016/s1579-2129(06)60280-2
Google Scholar
[11]
D. Hill and R. Binions, Breath Analysis for Medical Diagnosis, International Journal on Smart Sensing and Intelligent Systems, vol. 5, pp.401-440, (2012).
DOI: 10.21307/ijssis-2017-488
Google Scholar
[12]
M. Janicka, A. Kot-Wasik, J. Kot, J. Namieśnik, and Isoprostanes-Biomarkers of Lipid Peroxidation: Their Utility in Evaluating Oxidative Stress and Analysis , International Journal of Molecular Sciences vol. 11, pp.4631-4659, (2010).
DOI: 10.3390/ijms11114631
Google Scholar
[13]
G. E. Conner, M. Salathe, and R. Forteza, Lactoperoxidase and Hydrogen Peroxide Metabolism in the Airway, American Journal of Respiratory and Critical Care Medicine, vol. 166, pp. S57-S61, 2002/12/15 (2002).
DOI: 10.1164/rccm.2206018
Google Scholar
[14]
R. Stolarek, P. Bialasiewicz, M. Krol, and D. Nowak, Breath analysis of hydrogen peroxide as a diagnostic tool, Clinica Chimica Acta, vol. 411, pp.1849-1861, (2010).
DOI: 10.1016/j.cca.2010.08.031
Google Scholar
[15]
W. B. M. Gerritsen, J. Asin, P. Zanen, J. M. M. v. d. Bosch, and F. J. L. M. Haas, Markers of inflammation and oxidative stress in exacerbated chronic obstructive pulmonary disease patients, Respiratory Medicine, vol. 99, pp.84-90, (2005).
DOI: 10.1016/j.rmed.2004.04.017
Google Scholar
[16]
J. Rysz, R. A. Stolarek, R. Luczynski, A. Sarniak, A. Wlodarczyk, M. Kasielski, et al., Increased hydrogen peroxide concentration in the exhaled breath condensate of stable COPD patients after nebulized N-acetylcysteine, Pulmonary Pharmacology & Therapeutics, vol. 20, pp.281-289, (2007).
DOI: 10.1016/j.pupt.2006.03.011
Google Scholar
[17]
J. F. L. P. Ho, J. A. Innes and A. P. Greening, Expired hydrogen peroxide in breath condensate of cystic fibrosis patients, European Respiratory Journal, vol. 13, pp.103-106, (1999).
DOI: 10.1183/09031936.99.13110399
Google Scholar
[18]
A. -C. Olin, S. Svensson, G. Ljungkvist, M. Lärstad, V. Slabanja, B. Bake, et al., Factors influencing level of hydrogen peroxide in exhaled breath condensate, Microchemical Journal, vol. 82, pp.17-21, (2006).
DOI: 10.1016/j.microc.2005.06.003
Google Scholar
[19]
M. P. Cathcart, S. Love, and K. J. Hughes, The application of exhaled breath gas and exhaled breath condensate analysis in the investigation of the lower respiratory tract in veterinary medicine: A review, The Veterinary Journal, vol. 191, pp.282-291, (2012).
DOI: 10.1016/j.tvjl.2011.08.016
Google Scholar
[20]
W. J. C. Vanbeurden, G. A. Harff, P. N. R. Dekhuijzen, M. J. A. Van Den Bosch, J. P. H. M. Creemers, and F. W. J. M. Smeenk, An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate, Respiratory medecine, vol. 96, pp.197-203, (2002).
DOI: 10.1053/rmed.2001.1240
Google Scholar
[21]
W. B. Gerritsen, P. Zanen, A. A. Bauwens, J. M. van den Bosch, and F. J. Haas, Validation of a new method to measure hydrogen peroxide in exhaled breath condensate, Respiratory Medicine, vol. 99, pp.1132-1137, (2005).
DOI: 10.1016/j.rmed.2005.02.020
Google Scholar
[22]
J. Wiedemair, H. D. S. v. Dorp, W. Olthuis, and A. v. d. B. a, Toward a hydrogen peroxide sensor for exhaled breath analysis , Procedia Engineering vol. 25 p.116 – 119, (2011).
DOI: 10.1016/j.proeng.2011.12.029
Google Scholar
[23]
B. R. Celli and P. J. Barnes, Exacerbations of Chronic Obstructive Pulmonary Disease, European Respiratory Journal, vol. 29, p.1224–1238, (2007).
DOI: 10.1183/09031936.00109906
Google Scholar
[24]
Q. Jöbsis, H. C. Raatgeep, P. W. M. Hermans, and J. C. d. Jongste, Hydrogen peroxide in exhaled air is increased in stable asthmatic children, European Respiratory Journal, vol. 10, p.519–521, (1997).
DOI: 10.1183/09031936.97.10030519
Google Scholar
[25]
A. Antczak, Z. Kurmanowska, M. Kasielski, and D. Nowak, Inhaled glucocorticosteroids decrease hydrogen peroxide level in expired air condensate in asthmatic patients, Respiratory Medicine, vol. 94, pp.416-421, 5/ (2000).
DOI: 10.1053/rmed.1999.0801
Google Scholar
[26]
Y. Teng, J. Zhang, R. Yu, J. Bai, X. Yao, M. Huang, et al., Hydrogen Peroxide in Exhaled Breath Condensate in Patients with Asthma, A Promising Biomarker? , Chest, vol. 140, p.108–116 (2011).
DOI: 10.1378/chest.10-2816
Google Scholar
[27]
I. M. Ferreira, M. S. Hazari, C. Gutierrez, N. Zamel, and K. R. Chapman, Exhaled Nitric Oxide and Hydrogen Peroxide in Patients with Chronic Obstructive Pulmonary Disease: Effects of Inhaled Beclomethasone, American Journal of Respiratory and Critical Care Medicine, vol. 164, p.1012–1015, (2001).
DOI: 10.1164/ajrccm.164.6.2012139
Google Scholar
[28]
S. K. Chhabra and M. Gupta, Exhaled Breath Condensate Analysis in Chronic Obstructive Pulmonary Disease, Indian Journal of Chest Disease and Allied Science, vol. 54, pp.27-37, (2012).
DOI: 10.5005/ijcdas-54-1-27
Google Scholar
[29]
P. Reinhold and H. Knobloch, Exhaled breath condensate: lessons learned from veterinary medicine, Journal Of Breath Research, vol. 4 pp.1-16, (2010).
DOI: 10.1088/1752-7155/4/1/017001
Google Scholar
[30]
P. J. Prandhuber and G. Korshin, Methods for the Detction of Residual Concentrations of Hydrogen Peroxide in Advanced Oxidation Processes, WaterReuse Foundation Report, (2009).
Google Scholar
[31]
A. M. Jimenez and M. J. Navas, Chemiluminescence Methods (Present and Future), Grasas y Aceites, vol. 53, pp.64-75, (2002).
DOI: 10.3989/gya.2002.v53.i1.290
Google Scholar
[32]
N. Yamashiro, S. Uchida, Y. Satoh, Y. Morishima, H. Yokoyama, T. Satoh, et al., Determination of Hydrogen Peroxide in Water by Chemiluminescence Detection, (I) Flow Injection Type Hydrogen Peroxide Detection System, Journal of Nuclear Science And Technology, vol. 41, p.890–897, (2004).
DOI: 10.1080/18811248.2004.9715561
Google Scholar
[33]
A. K. Upadhyay, S. -M. Chen, T. -W. Ting, and Y. -Y. Peng, A Biosensor for Hydrogen Peroxide Based on Single walled Carbon Nanotube and Metal Oxide Modified Indium Tin Oxide Electrode , International Journal of Electrochemical Science, vol. 6, pp.3466-3482, (2011).
DOI: 10.1016/s1452-3981(23)18265-4
Google Scholar
[34]
X. Li, Z. Zhang, L. Tao, and M. Gao, Sensitive and selective chemiluminescence assay for hydrogen peroxide in exhaled breath condensate using nanoparticle-based catalysis, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 107, pp.311-316, 4/15/ (2013).
DOI: 10.1016/j.saa.2013.01.062
Google Scholar
[35]
Y. Wang, J. Du, Y. Li, D. Shan, X. Zhou, Z. Xue, et al., A amperometric biosensor for hydrogen peroxide by adsorption of horseradish peroxidase onto single-walled carbon nanotubes, Colloids and Surfaces B: Biointerfaces, vol. 90, pp.62-67, (2012).
DOI: 10.1016/j.colsurfb.2011.09.045
Google Scholar
[36]
A. Safavi and F. Farjami, Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film, Analytical Biochemistry, vol. 402, pp.20-25, (2010).
DOI: 10.1016/j.ab.2010.03.013
Google Scholar
[37]
A. Sun, H. Zhao, and J. Zheng, A novel hydrogen peroxide biosensor based on the Sn–ZnNPs/MWNTs nanocomposite film, Talanta, vol. 88, pp.259-264, (2012).
DOI: 10.1016/j.talanta.2011.09.067
Google Scholar
[38]
X. Liu, H. Feng, R. Zhao, Y. Wang, and X. Liu, A novel approach to construct a horseradish peroxidase|hydrophilic ionic liquids|Au nanoparticles dotted titanate nanotubes biosensor for amperometric sensing of hydrogen peroxide, Biosensors and Bioelectronics, vol. 31, pp.101-104, (2012).
DOI: 10.1016/j.bios.2011.09.045
Google Scholar
[39]
Z. Deng, Y. Gong, Y. Luo, and Y. Tian, WO3 nanostructures facilitate electron transfer of enzyme: Application to detection of H2O2 with high selectivity, Biosensors and Bioelectronics, vol. 24, pp.2465-2469, (2009).
DOI: 10.1016/j.bios.2008.12.037
Google Scholar
[40]
X. Liu, H. Feng, J. Zhang, R. Zhao, X. Liu, and D. K. Y. Wong, Hydrogen peroxide detection at a horseradish peroxidase biosensor with a Au nanoparticle–dotted titanate nanotube|hydrophobic ionic liquid scaffold, Biosensors and Bioelectronics, vol. 32, pp.188-194, (2012).
DOI: 10.1016/j.bios.2011.12.002
Google Scholar
[41]
J. W. Shie, U. Yogeswaran, and S. M. Chen, Haemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors, Talanta, vol. 78, pp.896-902, (2009).
DOI: 10.1016/j.talanta.2008.12.063
Google Scholar
[42]
W. Yang, Y. Li, Y. Bai, and C. Sun, Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film, Sensors and Actuators B: Chemical, vol. 115, pp.42-48, (2006).
DOI: 10.1016/j.snb.2005.08.017
Google Scholar
[43]
J. Xuan, X. -d. Jia, L. -P. Jiang, E. S. Abdel-Halim, and J. -J. Zhu, Gold nanoparticle-assembled capsules and their application as hydrogen peroxide biosensor based on hemoglobin, Bioelectrochemistry, vol. 84, pp.32-37, (2012).
DOI: 10.1016/j.bioelechem.2011.10.007
Google Scholar
[44]
X. -M. Miao, R. Yuan, Y. -Q. Chai, Y. -T. Shi, and Y. -Y. Yuan, Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode, Journal of Electroanalytical Chemistry, vol. 612, pp.157-163, (2008).
DOI: 10.1016/j.jelechem.2007.09.026
Google Scholar
[45]
A. S. Kumar and S. Sornambikai, selective amperometric sensing of hydrogen peroxide with nafion/copper particulates chemically modified electrode, Indian Journal of chemistry, vol. 48A, pp.940-945, (2009).
Google Scholar
[46]
Y. Zhang, H. Q. Luo, and N. B. Li, Hydrogen peroxide sensor based on Prussian blue electrodeposited on (3-mercaptopropyl)-trimethoxysilane polymer-modified gold electrode, Bioprocess Biosyst Eng vol. 34, p.215–221, (2011).
DOI: 10.1007/s00449-010-0463-1
Google Scholar
[47]
F. Moussy and R. C. Mercado, In vitro and in vivo calcification of Nafion membrane used for implantable biosensors, in Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE, 1997, pp.2592-2595.
DOI: 10.1109/iembs.1997.756863
Google Scholar
[48]
N. H. Jalani, K. Dunn, and R. Datta, Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells, Electrochimica Acta, vol. 51, pp.553-560, (2005).
DOI: 10.1016/j.electacta.2005.05.016
Google Scholar
[49]
P. Jonghyurk, S. E. Moon, E. K. Kim, H. R. Lee, and K. H. Park, Characterization of Nafion solid polymer elecrolyte for an electrochemical sensor using scnanning probe microscopy and electrochemical impedance spectroscopy, in Sensors, 2006. 5th IEEE Conference on, 2006, pp.1261-1264.
DOI: 10.1109/icsens.2007.355853
Google Scholar
[50]
X. Zhang, H. Ju and J. Wang, Electrochemical sensors, biosensors and their biomedical applications, 1st ed.: Academic Press, (2008).
Google Scholar
[51]
S. Li, X. Zhu, W. Zhang, G. Xie, and W. Feng, Hydrogen peroxide biosensor based on gold nanoparticles/thionine/gold nanoparticles/multi-walled carbon nanotubes–chitosans composite film-modified electrode, Applied Surface Science, vol. 258, pp.2802-2807, (2012).
DOI: 10.1016/j.apsusc.2011.10.138
Google Scholar
[52]
D. T. V. Anh, W. Olthuis, and P. Bergveld, Hydrogen peroxide detection with improved selectivity and sensitivity using constant current potentiometry, Sensors and Actuators B: Chemical, vol. 91, pp.1-4, (2003).
DOI: 10.1016/s0925-4005(03)00058-3
Google Scholar
[53]
H. Xuemei and T. Shiquan, An Optical Fiber H2O2 Sensing Probe Using a Titanium(IV) Oxyacetylacetonate Immobilized Nafion Coating on an Bent Optical Fiber Probe, Sensors Journal, IEEE, vol. 11, pp.2032-2036, (2011).
DOI: 10.1109/jsen.2011.2111367
Google Scholar
[54]
Y. HU, Z. Zhang, and C. Yang, A Sensitive Chemiluminescence Method for the Determination of H2O2 in Exhaled Breath Condensate, Analytical Sciences, vol. 24, pp.201-205, (2008).
DOI: 10.2116/analsci.24.201
Google Scholar
[55]
K. De Wael, Q. Bashir, S. Van Vlierberghe, P. Dubruel, H. A. Heering, and A. Adriaens, Electrochemical determination of hydrogen peroxide with cytochrome c peroxidase and horse heart cytochrome c entrapped in a gelatin hydrogel, Bioelectrochemistry, vol. 83, pp.15-18, (2012).
DOI: 10.1016/j.bioelechem.2011.07.001
Google Scholar
[56]
P. Xia, H. Liu, and Y. Tian, Cathodic detection of H2O2 based on nanopyramidal gold surface with enhance d electron transfer of myoglobin, Biosensors and Bioelectronics, vol. 24, pp.2470-2474, (2009).
DOI: 10.1016/j.bios.2008.12.029
Google Scholar
[57]
R. Toniolo, P. Geatti, G. Bontempelli, and G. Schiavon, Amperometric monitoring of hydrogen peroxide in workplace atmospheres by electrodes supported on ion-exchange membranes, Journal of Electroanalytical Chemistry, vol. 514, pp.123-128, (2001).
DOI: 10.1016/s0022-0728(01)00612-x
Google Scholar
[58]
A. L. Verma, S. Saxena, G. S. S. Saini, V. Gaur, and V. K. Jain, Hydrogen peroxide vapor sensor using metal-phthalocyanine functionalized carbon nanotubes, Thin Solid Films, vol. 519, pp.8144-8148, (2011).
DOI: 10.1016/j.tsf.2011.06.034
Google Scholar
[59]
F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, Selective Detection of Vapor Phase Hydrogen Peroxide with Phthalocyanine Chemiresistors, Journal of the American Chemical Society, vol. 130, pp.3712-3713, (2008).
DOI: 10.1021/ja710324f
Google Scholar
[60]
J. Benedet, D. Lu, K. Cizek, J. L. Belle, and J. Wang, Amperometric sensing of hydrogen peroxide vapor for security screening, Anal Bioanal Chem, vol. 395, p.371–376, (2009).
DOI: 10.1007/s00216-009-2788-7
Google Scholar