Review on Exhaled Hydrogen Peroxide as a Potential Biomarker for Diagnosis of Inflammatory Lung Diseases

Article Preview

Abstract:

Exhaled breath (EB) contains thousands of volatile and nonvolatile biomolecules. EB analysis is non-invasive and convenient to patients than blood or urine tests. The exhaled biomolecules have long been studied and recognized to have some potential biomarkers for diagnosis of diseases, evaluation of metabolic disorders and monitoring drug efficiency. For instance, Biomarkers such as exhaled hydrogen peroxide (H2O2) and exhaled nitric oxide are associated with inflammatory lung diseases, ammonia is used as a biomarker for kidney diseases and exhaled acetone is related to glucose concentration in blood and so it is used for diabetes diagnosis. H2O2 concentration in EB increases with the severity of lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and adult respiratory distress syndrome (ARDS). Different methods are used to measure H2O2 in exhaled breath condensate (EBC). In EBC the EB is collected in a condensate unit and then H2O2 concentration in the collected sample is detected using titrimetric, spectrophotometry, fluorescence, chemiluminescence and electrochemical sensors. Recently, some works have been done to measure the concentration of H2O2 in its vapor phase without a need for condensation units. The aim of this paper is to review and summarize the current methods being used to measure the concentration of H2O2 in EB to identify inflammatory lung diseases, and to discuss the advantages and disadvantages of these methods

You might also be interested in these eBooks

Info:

Pages:

77-87

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Montushi, Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications, Therapeutic Advances in Respiratory Disease, vol. 1, pp.5-23, (2007).

DOI: 10.1177/1753465807082373

Google Scholar

[2] S. Lo Schiavo, L. Livoti, A. Calisto, A. Bramanti, N. Donato, M. Latino, et al., Novel sensing materials for breath analysis devices, in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, pp.670-673.

DOI: 10.1109/iembs.2010.5627198

Google Scholar

[3] P. Montuschi, Exhaled breath condensate analysis in patients with COPD, Clinica Chimica Acta, vol. 356, pp.22-34, (2005).

DOI: 10.1016/j.cccn.2005.01.012

Google Scholar

[4] J. B. McCafferty, T. A. B. dshaw, S. Tate, A. P. Greening, and J. A. I. nes, Effects of breathing pattern and inspired air conditio ns on breath condens ate volum e, pH, nitrite, and protein concentrations, Thorax vol. 59, p.694–698, (2004).

DOI: 10.1136/thx.2003.016949

Google Scholar

[5] I. Horva, J. Hunt, and P. J. Barnes, Exhaled breath condensate: methodological recommendations and unresolved questions, Eur Respir J vol. 26, p.523–548, (2005).

DOI: 10.1183/09031936.05.00029705

Google Scholar

[6] J. Stefanska, A. Sarniak, A. Wlodarczyk, M. Sokolowska, Z. Doniec, P. Bialasiewicz, et al., Hydrogen peroxide and nitrite reduction in exhaled breath condensate of COPD patients, Pulmonary Pharmacology & Therapeutics, vol. 25, pp.343-348, 10/ (2012).

DOI: 10.1016/j.pupt.2012.06.001

Google Scholar

[7] J. -L. Lin, M. H. Bonnichsen, and P. S. Thomas, Standardization of exhaled breath condensate: effects of different de-aeration protocols on pH and H2O2 concentrations, Journal Of Breath Research, vol. 5, pp.1-5, (2011).

DOI: 10.1088/1752-7155/5/1/011001

Google Scholar

[8] L. C. A. Amorim and Z. de L. Cardeal, Breath air analysis and its use as a biomarker in biological monitoring of occupational and environmental exposure to chemical agents, Journal of Chromatography B, vol. 853, pp.1-9, 6/15/ (2007).

DOI: 10.1016/j.jchromb.2007.03.023

Google Scholar

[9] M. Zhou, Y. Liu, and Y. Duan, Breath biomarkers in diagnosis of pulmonary diseases, Clinica Chimica Acta, vol. 413, pp.1770-1780, 11/12/ (2012).

DOI: 10.1016/j.cca.2012.07.006

Google Scholar

[10] A. Bruhn, L. Liberona, C. Lisboa, and G. Borzone, Limitations of the Technique to Determine Hydrogen Peroxide Levels in Exhaled Breath Condensate From Patients With Adult Respiratory Distress Syndrome, Arch Bronconeumol, vol. 41, pp.542-546, (2005).

DOI: 10.1016/s1579-2129(06)60280-2

Google Scholar

[11] D. Hill and R. Binions, Breath Analysis for Medical Diagnosis, International Journal on Smart Sensing and Intelligent Systems, vol. 5, pp.401-440, (2012).

DOI: 10.21307/ijssis-2017-488

Google Scholar

[12] M. Janicka, A. Kot-Wasik, J. Kot, J. Namieśnik, and Isoprostanes-Biomarkers of Lipid Peroxidation: Their Utility in Evaluating Oxidative Stress and Analysis , International Journal of Molecular Sciences vol. 11, pp.4631-4659, (2010).

DOI: 10.3390/ijms11114631

Google Scholar

[13] G. E. Conner, M. Salathe, and R. Forteza, Lactoperoxidase and Hydrogen Peroxide Metabolism in the Airway, American Journal of Respiratory and Critical Care Medicine, vol. 166, pp. S57-S61, 2002/12/15 (2002).

DOI: 10.1164/rccm.2206018

Google Scholar

[14] R. Stolarek, P. Bialasiewicz, M. Krol, and D. Nowak, Breath analysis of hydrogen peroxide as a diagnostic tool, Clinica Chimica Acta, vol. 411, pp.1849-1861, (2010).

DOI: 10.1016/j.cca.2010.08.031

Google Scholar

[15] W. B. M. Gerritsen, J. Asin, P. Zanen, J. M. M. v. d. Bosch, and F. J. L. M. Haas, Markers of inflammation and oxidative stress in exacerbated chronic obstructive pulmonary disease patients, Respiratory Medicine, vol. 99, pp.84-90, (2005).

DOI: 10.1016/j.rmed.2004.04.017

Google Scholar

[16] J. Rysz, R. A. Stolarek, R. Luczynski, A. Sarniak, A. Wlodarczyk, M. Kasielski, et al., Increased hydrogen peroxide concentration in the exhaled breath condensate of stable COPD patients after nebulized N-acetylcysteine, Pulmonary Pharmacology & Therapeutics, vol. 20, pp.281-289, (2007).

DOI: 10.1016/j.pupt.2006.03.011

Google Scholar

[17] J. F. L. P. Ho, J. A. Innes and A. P. Greening, Expired hydrogen peroxide in breath condensate of cystic fibrosis patients, European Respiratory Journal, vol. 13, pp.103-106, (1999).

DOI: 10.1183/09031936.99.13110399

Google Scholar

[18] A. -C. Olin, S. Svensson, G. Ljungkvist, M. Lärstad, V. Slabanja, B. Bake, et al., Factors influencing level of hydrogen peroxide in exhaled breath condensate, Microchemical Journal, vol. 82, pp.17-21, (2006).

DOI: 10.1016/j.microc.2005.06.003

Google Scholar

[19] M. P. Cathcart, S. Love, and K. J. Hughes, The application of exhaled breath gas and exhaled breath condensate analysis in the investigation of the lower respiratory tract in veterinary medicine: A review, The Veterinary Journal, vol. 191, pp.282-291, (2012).

DOI: 10.1016/j.tvjl.2011.08.016

Google Scholar

[20] W. J. C. Vanbeurden, G. A. Harff, P. N. R. Dekhuijzen, M. J. A. Van Den Bosch, J. P. H. M. Creemers, and F. W. J. M. Smeenk, An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate, Respiratory medecine, vol. 96, pp.197-203, (2002).

DOI: 10.1053/rmed.2001.1240

Google Scholar

[21] W. B. Gerritsen, P. Zanen, A. A. Bauwens, J. M. van den Bosch, and F. J. Haas, Validation of a new method to measure hydrogen peroxide in exhaled breath condensate, Respiratory Medicine, vol. 99, pp.1132-1137, (2005).

DOI: 10.1016/j.rmed.2005.02.020

Google Scholar

[22] J. Wiedemair, H. D. S. v. Dorp, W. Olthuis, and A. v. d. B. a, Toward a hydrogen peroxide sensor for exhaled breath analysis , Procedia Engineering vol. 25 p.116 – 119, (2011).

DOI: 10.1016/j.proeng.2011.12.029

Google Scholar

[23] B. R. Celli and P. J. Barnes, Exacerbations of Chronic Obstructive Pulmonary Disease, European Respiratory Journal, vol. 29, p.1224–1238, (2007).

DOI: 10.1183/09031936.00109906

Google Scholar

[24] Q. Jöbsis, H. C. Raatgeep, P. W. M. Hermans, and J. C. d. Jongste, Hydrogen peroxide in exhaled air is increased in stable asthmatic children, European Respiratory Journal, vol. 10, p.519–521, (1997).

DOI: 10.1183/09031936.97.10030519

Google Scholar

[25] A. Antczak, Z. Kurmanowska, M. Kasielski, and D. Nowak, Inhaled glucocorticosteroids decrease hydrogen peroxide level in expired air condensate in asthmatic patients, Respiratory Medicine, vol. 94, pp.416-421, 5/ (2000).

DOI: 10.1053/rmed.1999.0801

Google Scholar

[26] Y. Teng, J. Zhang, R. Yu, J. Bai, X. Yao, M. Huang, et al., Hydrogen Peroxide in Exhaled Breath Condensate in Patients with Asthma, A Promising Biomarker? , Chest, vol. 140, p.108–116 (2011).

DOI: 10.1378/chest.10-2816

Google Scholar

[27] I. M. Ferreira, M. S. Hazari, C. Gutierrez, N. Zamel, and K. R. Chapman, Exhaled Nitric Oxide and Hydrogen Peroxide in Patients with Chronic Obstructive Pulmonary Disease: Effects of Inhaled Beclomethasone, American Journal of Respiratory and Critical Care Medicine, vol. 164, p.1012–1015, (2001).

DOI: 10.1164/ajrccm.164.6.2012139

Google Scholar

[28] S. K. Chhabra and M. Gupta, Exhaled Breath Condensate Analysis in Chronic Obstructive Pulmonary Disease, Indian Journal of Chest Disease and Allied Science, vol. 54, pp.27-37, (2012).

DOI: 10.5005/ijcdas-54-1-27

Google Scholar

[29] P. Reinhold and H. Knobloch, Exhaled breath condensate: lessons learned from veterinary medicine, Journal Of Breath Research, vol. 4 pp.1-16, (2010).

DOI: 10.1088/1752-7155/4/1/017001

Google Scholar

[30] P. J. Prandhuber and G. Korshin, Methods for the Detction of Residual Concentrations of Hydrogen Peroxide in Advanced Oxidation Processes, WaterReuse Foundation Report, (2009).

Google Scholar

[31] A. M. Jimenez and M. J. Navas, Chemiluminescence Methods (Present and Future), Grasas y Aceites, vol. 53, pp.64-75, (2002).

DOI: 10.3989/gya.2002.v53.i1.290

Google Scholar

[32] N. Yamashiro, S. Uchida, Y. Satoh, Y. Morishima, H. Yokoyama, T. Satoh, et al., Determination of Hydrogen Peroxide in Water by Chemiluminescence Detection, (I) Flow Injection Type Hydrogen Peroxide Detection System, Journal of Nuclear Science And Technology, vol. 41, p.890–897, (2004).

DOI: 10.1080/18811248.2004.9715561

Google Scholar

[33] A. K. Upadhyay, S. -M. Chen, T. -W. Ting, and Y. -Y. Peng, A Biosensor for Hydrogen Peroxide Based on Single walled Carbon Nanotube and Metal Oxide Modified Indium Tin Oxide Electrode , International Journal of Electrochemical Science, vol. 6, pp.3466-3482, (2011).

DOI: 10.1016/s1452-3981(23)18265-4

Google Scholar

[34] X. Li, Z. Zhang, L. Tao, and M. Gao, Sensitive and selective chemiluminescence assay for hydrogen peroxide in exhaled breath condensate using nanoparticle-based catalysis, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 107, pp.311-316, 4/15/ (2013).

DOI: 10.1016/j.saa.2013.01.062

Google Scholar

[35] Y. Wang, J. Du, Y. Li, D. Shan, X. Zhou, Z. Xue, et al., A amperometric biosensor for hydrogen peroxide by adsorption of horseradish peroxidase onto single-walled carbon nanotubes, Colloids and Surfaces B: Biointerfaces, vol. 90, pp.62-67, (2012).

DOI: 10.1016/j.colsurfb.2011.09.045

Google Scholar

[36] A. Safavi and F. Farjami, Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film, Analytical Biochemistry, vol. 402, pp.20-25, (2010).

DOI: 10.1016/j.ab.2010.03.013

Google Scholar

[37] A. Sun, H. Zhao, and J. Zheng, A novel hydrogen peroxide biosensor based on the Sn–ZnNPs/MWNTs nanocomposite film, Talanta, vol. 88, pp.259-264, (2012).

DOI: 10.1016/j.talanta.2011.09.067

Google Scholar

[38] X. Liu, H. Feng, R. Zhao, Y. Wang, and X. Liu, A novel approach to construct a horseradish peroxidase|hydrophilic ionic liquids|Au nanoparticles dotted titanate nanotubes biosensor for amperometric sensing of hydrogen peroxide, Biosensors and Bioelectronics, vol. 31, pp.101-104, (2012).

DOI: 10.1016/j.bios.2011.09.045

Google Scholar

[39] Z. Deng, Y. Gong, Y. Luo, and Y. Tian, WO3 nanostructures facilitate electron transfer of enzyme: Application to detection of H2O2 with high selectivity, Biosensors and Bioelectronics, vol. 24, pp.2465-2469, (2009).

DOI: 10.1016/j.bios.2008.12.037

Google Scholar

[40] X. Liu, H. Feng, J. Zhang, R. Zhao, X. Liu, and D. K. Y. Wong, Hydrogen peroxide detection at a horseradish peroxidase biosensor with a Au nanoparticle–dotted titanate nanotube|hydrophobic ionic liquid scaffold, Biosensors and Bioelectronics, vol. 32, pp.188-194, (2012).

DOI: 10.1016/j.bios.2011.12.002

Google Scholar

[41] J. W. Shie, U. Yogeswaran, and S. M. Chen, Haemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors, Talanta, vol. 78, pp.896-902, (2009).

DOI: 10.1016/j.talanta.2008.12.063

Google Scholar

[42] W. Yang, Y. Li, Y. Bai, and C. Sun, Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film, Sensors and Actuators B: Chemical, vol. 115, pp.42-48, (2006).

DOI: 10.1016/j.snb.2005.08.017

Google Scholar

[43] J. Xuan, X. -d. Jia, L. -P. Jiang, E. S. Abdel-Halim, and J. -J. Zhu, Gold nanoparticle-assembled capsules and their application as hydrogen peroxide biosensor based on hemoglobin, Bioelectrochemistry, vol. 84, pp.32-37, (2012).

DOI: 10.1016/j.bioelechem.2011.10.007

Google Scholar

[44] X. -M. Miao, R. Yuan, Y. -Q. Chai, Y. -T. Shi, and Y. -Y. Yuan, Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode, Journal of Electroanalytical Chemistry, vol. 612, pp.157-163, (2008).

DOI: 10.1016/j.jelechem.2007.09.026

Google Scholar

[45] A. S. Kumar and S. Sornambikai, selective amperometric sensing of hydrogen peroxide with nafion/copper particulates chemically modified electrode, Indian Journal of chemistry, vol. 48A, pp.940-945, (2009).

Google Scholar

[46] Y. Zhang, H. Q. Luo, and N. B. Li, Hydrogen peroxide sensor based on Prussian blue electrodeposited on (3-mercaptopropyl)-trimethoxysilane polymer-modified gold electrode, Bioprocess Biosyst Eng vol. 34, p.215–221, (2011).

DOI: 10.1007/s00449-010-0463-1

Google Scholar

[47] F. Moussy and R. C. Mercado, In vitro and in vivo calcification of Nafion membrane used for implantable biosensors, in Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE, 1997, pp.2592-2595.

DOI: 10.1109/iembs.1997.756863

Google Scholar

[48] N. H. Jalani, K. Dunn, and R. Datta, Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells, Electrochimica Acta, vol. 51, pp.553-560, (2005).

DOI: 10.1016/j.electacta.2005.05.016

Google Scholar

[49] P. Jonghyurk, S. E. Moon, E. K. Kim, H. R. Lee, and K. H. Park, Characterization of Nafion solid polymer elecrolyte for an electrochemical sensor using scnanning probe microscopy and electrochemical impedance spectroscopy, in Sensors, 2006. 5th IEEE Conference on, 2006, pp.1261-1264.

DOI: 10.1109/icsens.2007.355853

Google Scholar

[50] X. Zhang, H. Ju and J. Wang, Electrochemical sensors, biosensors and their biomedical applications, 1st ed.: Academic Press, (2008).

Google Scholar

[51] S. Li, X. Zhu, W. Zhang, G. Xie, and W. Feng, Hydrogen peroxide biosensor based on gold nanoparticles/thionine/gold nanoparticles/multi-walled carbon nanotubes–chitosans composite film-modified electrode, Applied Surface Science, vol. 258, pp.2802-2807, (2012).

DOI: 10.1016/j.apsusc.2011.10.138

Google Scholar

[52] D. T. V. Anh, W. Olthuis, and P. Bergveld, Hydrogen peroxide detection with improved selectivity and sensitivity using constant current potentiometry, Sensors and Actuators B: Chemical, vol. 91, pp.1-4, (2003).

DOI: 10.1016/s0925-4005(03)00058-3

Google Scholar

[53] H. Xuemei and T. Shiquan, An Optical Fiber H2O2 Sensing Probe Using a Titanium(IV) Oxyacetylacetonate Immobilized Nafion Coating on an Bent Optical Fiber Probe, Sensors Journal, IEEE, vol. 11, pp.2032-2036, (2011).

DOI: 10.1109/jsen.2011.2111367

Google Scholar

[54] Y. HU, Z. Zhang, and C. Yang, A Sensitive Chemiluminescence Method for the Determination of H2O2 in Exhaled Breath Condensate, Analytical Sciences, vol. 24, pp.201-205, (2008).

DOI: 10.2116/analsci.24.201

Google Scholar

[55] K. De Wael, Q. Bashir, S. Van Vlierberghe, P. Dubruel, H. A. Heering, and A. Adriaens, Electrochemical determination of hydrogen peroxide with cytochrome c peroxidase and horse heart cytochrome c entrapped in a gelatin hydrogel, Bioelectrochemistry, vol. 83, pp.15-18, (2012).

DOI: 10.1016/j.bioelechem.2011.07.001

Google Scholar

[56] P. Xia, H. Liu, and Y. Tian, Cathodic detection of H2O2 based on nanopyramidal gold surface with enhance d electron transfer of myoglobin, Biosensors and Bioelectronics, vol. 24, pp.2470-2474, (2009).

DOI: 10.1016/j.bios.2008.12.029

Google Scholar

[57] R. Toniolo, P. Geatti, G. Bontempelli, and G. Schiavon, Amperometric monitoring of hydrogen peroxide in workplace atmospheres by electrodes supported on ion-exchange membranes, Journal of Electroanalytical Chemistry, vol. 514, pp.123-128, (2001).

DOI: 10.1016/s0022-0728(01)00612-x

Google Scholar

[58] A. L. Verma, S. Saxena, G. S. S. Saini, V. Gaur, and V. K. Jain, Hydrogen peroxide vapor sensor using metal-phthalocyanine functionalized carbon nanotubes, Thin Solid Films, vol. 519, pp.8144-8148, (2011).

DOI: 10.1016/j.tsf.2011.06.034

Google Scholar

[59] F. I. Bohrer, C. N. Colesniuc, J. Park, I. K. Schuller, A. C. Kummel, and W. C. Trogler, Selective Detection of Vapor Phase Hydrogen Peroxide with Phthalocyanine Chemiresistors, Journal of the American Chemical Society, vol. 130, pp.3712-3713, (2008).

DOI: 10.1021/ja710324f

Google Scholar

[60] J. Benedet, D. Lu, K. Cizek, J. L. Belle, and J. Wang, Amperometric sensing of hydrogen peroxide vapor for security screening, Anal Bioanal Chem, vol. 395, p.371–376, (2009).

DOI: 10.1007/s00216-009-2788-7

Google Scholar