Processing and Modification of Ionic Polymers Metal Composites (IPMC) - A Review

Article Preview

Abstract:

This paper presents an overview of various innovative fabrication approaches and the potential applications of ionic polymer metal composites (IPMC), which is a composite material consisting of a polymer membrane sandwiched between two thin electrode layers. When given a voltage within a range of 1-5V, cations inside accompanying with water molecules of IPMC move across the width of the material causing a uniform water distribution and finally to achieve it’s bending motion. In addition to a classical processing method, three innovative modification approaches are recommended to fabricate IPMC, particularly to settle water electrolysis and leakage for multiple practical applications. Also, three applications are extensively highlighted in the later pages of the paper. This is a very new field and with the research done so far, it is believed that IPMC has a potential which is worth research elaborately. This paper presents an overview of the manufacturing components, techniques, related problems and applications of IPMC. Additionally, it recommends innovative modification fabrication approaches to subdue the associated problems in the existing conventional fabrication processing.

You might also be interested in these eBooks

Info:

Pages:

13-20

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Farid M, Zhao G, Khuong T L, et al. Biomimetic Applications of Ionic Polymer Metal Composites (IPMC) Actuators-A Critical Review[C]/Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2014, 20: 1-10.

DOI: 10.4028/www.scientific.net/jbbbe.20.1

Google Scholar

[2] Shahinpoor M, Kim K J. Ionic polymer-metal composites: I. Fundamentals[J]. Smart materials and structures, 2001, 10(4): 819.

DOI: 10.1088/0964-1726/10/4/327

Google Scholar

[3] Hunter I W, Lafontaine S. A comparison of muscle with artificial actuators[C]/Solid-State Sensor and Actuator Workshop, 1992. 5th Technical Digest., IEEE. IEEE, 1992: 178-185.

DOI: 10.1109/solsen.1992.228297

Google Scholar

[4] Oguro K, Kawami Y, Takenaka H. Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage[J]. Journal of Micromachine Society, 1992, 5(1): 27-30.

Google Scholar

[6] Shahinpoor M. Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles[J]. Smart Materials and Structures, 1992, 1(1): 91.

DOI: 10.1088/0964-1726/1/1/014

Google Scholar

[6] Sadeghipour K, Salomon R, Neogi S. Development of a novel electrochemically active membrane and'smart'material based vibration sensor/damper[J]. Smart Materials and Structures, 1992, 1(2): 172.

DOI: 10.1088/0964-1726/1/2/012

Google Scholar

[7] Nemat-Nasser S, Wu Y. Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms[J]. Journal of Applied Physics, 2003, 93(9): 5255-5267.

DOI: 10.1063/1.1563300

Google Scholar

[8] Lu Z, Lanagan M, Manias E, et al. Two-port transmission line technique for dielectric property characterization of polymer electrolyte membranes[J]. The Journal of Physical Chemistry B, 2009, 113(41): 13551-13559.

DOI: 10.1021/jp9057115

Google Scholar

[9] Oguro K, Fujiwara N, Asaka K, et al. Polymer electrolyte actuator with gold electrodes[C]/1999 Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 1999: 64-71.

DOI: 10.1117/12.349698

Google Scholar

[10] Lu Z, Manias E, Macdonald D D, et al. Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy[J]. The Journal of Physical Chemistry A, 2009, 113(44): 12207-12214.

DOI: 10.1021/jp9059246

Google Scholar

[11] Wang J, Xu C, Taya M, et al. A Flemion-based actuator with ionic liquid as solvent[J]. Smart Materials and Structures, 2007, 16(2): S214.

DOI: 10.1088/0964-1726/16/2/s03

Google Scholar

[12] Onishi K, Sewa S, Asaka K, et al. The effects of counter ions on characterization and performance of a solid polymer electrolyte actuator[J]. Electrochimica Acta, 2001, 46(8): 1233-1241.

DOI: 10.1016/s0013-4686(00)00695-2

Google Scholar

[13] Tadokoro S, Yamagami S, Takamori T, et al. Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion[C]/SPIE's 7th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 2000: 92-102.

DOI: 10.1117/12.387767

Google Scholar

[14] Chen Q, Xiong K, Bian K, et al. Preparation and performance of soft actuator based on IPMC with silver electrodes[J]. Frontiers of Mechanical Engineering in China, 2009, 4(4): 436-440.

DOI: 10.1007/s11465-009-0054-5

Google Scholar

[15] Bar-Cohen Y. Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges[M]. Bellingham, WA: SPIE press, (2004).

DOI: 10.1117/3.547465

Google Scholar

[16] Chen Q, Xiong K, Bian K, et al. Preparation and performance of soft actuator based on IPMC with silver electrodes[J]. Frontiers of Mechanical Engineering in China, 2009, 4(4): 436-440.

DOI: 10.1007/s11465-009-0054-5

Google Scholar

[17] Yi A, Ke X, Na G. Experimental Research on IPMC Material Tensile Samples [J][J]. Acta Aeronautica Et Astronautica Sinica, 2009, 5: 035.

Google Scholar

[18] Lei H, Li W, Zhu G, et al. Evaluation of encapsulated ipmc sensor based on thick parylene coating[C]/ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012: 35-42.

DOI: 10.1115/smasis2012-7975

Google Scholar

[19] Luo B, Zhu Z, WANG Y, et al. Research on the stability and packaging technology of IPMC[J]. Journal of Functional Materials, 2012, 8: 004.

Google Scholar

[20] Punning A, Kruusmaa M, Aabloo A. Surface resistance experiments with IPMC sensors and actuators[J]. Sensors and Actuators A: Physical, 2007, 133(1): 200-209.

DOI: 10.1016/j.sna.2006.03.010

Google Scholar

[21] Shahinpoor M, Kim K J. The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles[J]. Smart Materials and Structures, 2000, 9(4): 543.

DOI: 10.1088/0964-1726/9/4/318

Google Scholar

[22] Kim K J, Shahinpoor M. Effect of the surface-electrode resistance on the actuation of ionic polymer-metal composite (IPMC) artificial muscles[C]/1999 Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 1999: 308-319.

DOI: 10.1117/12.349703

Google Scholar

[23] Lee S, Park H, Pandita S D, et al. Performance improvement of IPMC (ionic polymer metal composites) for a flapping actuator[J]. International Journal of Control Automation and Systems, 2006, 4(6): 748.

Google Scholar

[24] Wang J, Xu C, Taya M, et al. A Flemion-based actuator with ionic liquid as solvent[J]. Smart Materials and Structures, 2007, 16(2): S214.

DOI: 10.1088/0964-1726/16/2/s03

Google Scholar

[25] Lee J W, Yoo Y T. Anion effects in imidazolium ionic liquids on the performance of IPMCs[J]. Sensors and Actuators B: Chemical, 2009, 137(2): 539-546.

DOI: 10.1016/j.snb.2009.01.041

Google Scholar

[26] Lee H K, Choi N J, Jung S, et al. Ionic polymer-metal composites (IPMCs) containing Cu/Ni electrodes and ionic liquids for durability[C]/SPIE Europe Microtechnologies for the New Millennium. International Society for Optics and Photonics, 2009: 73620I-73620I-8.

DOI: 10.1117/12.821169

Google Scholar

[27] Jin N, Wang B, Bian K, et al. Performance of ionic polymer-metal composite (IPMC) with different surface roughening methods[J]. Frontiers of Mechanical Engineering in China, 2009, 4(4): 430-435.

DOI: 10.1007/s11465-009-0053-6

Google Scholar

[28] Xu Y, Zhao G, Zhu Y M, et al. Analysis of Characteristics and Applications of IPMC Material Using Nafion Membrane[J]. Applied Mechanics and Materials, 2014, 461: 342-346.

DOI: 10.4028/www.scientific.net/amm.461.342

Google Scholar

[29] Li C, Sun G, Ren S, et al. Casting Nafion–sulfonated organosilica nano-composite membranes used in direct methanol fuel cells[J]. Journal of membrane science, 2006, 272(1): 50-57.

DOI: 10.1016/j.memsci.2005.07.032

Google Scholar

[30] Silva R F, De Francesco M, Pozio A. Solution-cast Nafion< sup>®</sup> ionomer membranes: preparation and characterization[J]. Electrochimica Acta, 2004, 49(19): 3211-3219.

DOI: 10.1016/j.electacta.2004.02.035

Google Scholar

[31] Lian Y, Liu Y, Jiang T, et al. Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator[J]. The Journal of Physical Chemistry C, 2010, 114(21): 9659-9663.

DOI: 10.1021/jp101337h

Google Scholar

[32] He Q, Yu M, Ding Y, et al. Synthesis and characterization of multiwalled carbon nanotube/IPMC actuator for imitating locomotion of gecko's toes[C]/SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2012: 83401M-83401M-8.

DOI: 10.1117/12.913764

Google Scholar

[33] Yip J, Ding F, Yick K L, et al. Tunable carbon nanotube ionic polymer actuators that are operable in dry conditions[J]. Sensors and Actuators B: Chemical, 2012, 162(1): 76-81.

DOI: 10.1016/j.snb.2011.12.038

Google Scholar

[34] Yang W, Choi H, Choi S, et al. Carbon nanotube–graphene composite for ionic polymer actuators[J]. Smart Materials and Structures, 2012, 21(5): 055012.

DOI: 10.1088/0964-1726/21/5/055012

Google Scholar

[35] Xu Y, Ding Y, Deng K, et al. Fabrication and properties of carbon nanotube and graphene for ionic polymer actuator[J]. Journal of materials science and engineering, 2013, 31(3).

Google Scholar

[36] Ismail Y A, Shin S R, Shin K M, et al. Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization[J]. Sensors and Actuators B: Chemical, 2008, 129(2): 834-840.

DOI: 10.1016/j.snb.2007.09.083

Google Scholar

[37] Li J, Ma W, Song L, et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan[J]. Nano letters, 2011, 11(11): 4636-4641.

DOI: 10.1021/nl202132m

Google Scholar

[38] Shahinpoor M. Chitosan/IPMC Artificial Muscles[J]. Advances in Science and Technology, 2013, 79: 32-40.

Google Scholar

[39] Armand M, Endres F, MacFarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature materials, 2009, 8(8): 621-629.

DOI: 10.1038/nmat2448

Google Scholar

[40] Lee D Y, Park I S, Lee M H, et al. Ionic polymer–metal composite bending actuator loaded with multi-walled carbon nanotubes[J]. Sensors and Actuators A: Physical, 2007, 133(1): 117-127.

DOI: 10.1016/j.sna.2006.04.005

Google Scholar

[41] Choi J J, Lee J H, Hahn B D, et al. Co-firing of PZN-PZT/Ag multilayer actuator prepared by tape-casting method[J]. Materials Research Bulletin, 2008, 43(2): 483-490.

DOI: 10.1016/j.materresbull.2007.02.033

Google Scholar

[42] Sugino T, Kiyohara K, Takeuchi I, et al. Actuator properties of the complexes composed by carbon nanotube and ionic liquid: the effects of additives[J]. Sensors and Actuators B: Chemical, 2009, 141(1): 179-186.

DOI: 10.1016/j.snb.2009.06.002

Google Scholar

[43] Mukai K, Asaka K, Kiyohara K, et al. High performance fully plastic actuator based on ionic-liquid-based bucky gel[J]. Electrochimica Acta, 2008, 53(17): 5555-5562.

DOI: 10.1016/j.electacta.2008.02.113

Google Scholar

[44] Terasawa N, Takeuchi I, Matsumoto H. Electrochemical properties and actuation mechanisms of actuators using carbon nanotube-ionic liquid gel[J]. Sensors and Actuators B: Chemical, 2009, 139(2): 624-630.

DOI: 10.1016/j.snb.2009.03.057

Google Scholar

[45] Terasawa N, Takeuchi I. Electrochemical property and actuation mechanism of an actuator using three different electrode and same electrolyte in air: Carbon nanotube/ionic liquid/polymer gel electrode, carbon nanotube/ionic liquid gel electrode and Au paste as an electrode[J]. Sensors and Actuators B: Chemical, 2010, 145(2): 775-780.

DOI: 10.1016/j.snb.2010.01.043

Google Scholar

[46] Kamamichi N, Maeba T, Yamakita M, et al. Fabrication of bucky gel actuator/sensor devices based on printing method[C]/Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008: 582-587.

DOI: 10.1109/iros.2008.4651100

Google Scholar

[47] Tekin E, Smith P J, Schubert U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles[J]. Soft Matter, 2008, 4(4): 703-713.

DOI: 10.1039/b711984d

Google Scholar

[48] Chung J W, Lee H S, Lee K, et al. Method of forming thick layer by screen printing and method of forming piezoelectric actuator of inkjet head: U.S. Patent 7, 677, 707[P]. 2010-3-16.

Google Scholar

[49] Shin K Y, Hong J Y, Jang J. Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing[J]. Chem. Commun., 2011, 47(30): 8527-8529.

DOI: 10.1039/c1cc12913a

Google Scholar

[50] Yeom S W, Oh I K. A biomimetic jellyfish robot based on ionic polymer metal composite actuators[J]. Smart materials and structures, 2009, 18(8): 085002.

DOI: 10.1088/0964-1726/18/8/085002

Google Scholar

[51] Jeon J H, Oh I K. Selective growth of platinum electrodes for MDOF IPMC actuators[J]. Thin Solid Films, 2009, 517(17): 5288-5292.

DOI: 10.1016/j.tsf.2009.03.111

Google Scholar

[52] Leang K K, Shan Y, Song S, et al. Integrated sensing for IPMC actuators using strain gages for underwater applications[J]. Mechatronics, IEEE/ASME Transactions on, 2012, 17(2): 345-355.

DOI: 10.1109/tmech.2011.2105885

Google Scholar

[53] HAO L N, Xu S, LIU B. A Miniature Fish-like Robot with Infrared Remote Receiver and IPMC Actuator [J]. Journal of Northeastern University (Natural Science), 2009, 6: 004.

Google Scholar

[54] Aw K C, Praneeth S V. Low frequency vibration energy harvesting from human motion using IPMC cantilever with electromagnectic transduction[C]/Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference on. IEEE, 2013: 645-648.

DOI: 10.1109/nems.2013.6559812

Google Scholar

[55] Kim K J, Kim S J, Wong J. Methods of fabricating multi-degree of freedom shaped electroactive polymer actuators/sensors for catheters: U.S. Patent Application 13/787, 587[P]. 2013-3-6.

Google Scholar

[56] HE H, ZHAN X, WANG L, et al. The preparation and electromechanical characteristic of the multilayer artificial muscle[J]. Journal of Functional Materials, 2011: S3.

Google Scholar

[57] Kim S J, Pugal D, Wong J, et al. A bio-inspired multi degree of freedom actuator based on a novel cylindrical ionic polymer–metal composite material[J]. Robotics and Autonomous Systems, 2014, 62(1): 53-60.

DOI: 10.1016/j.robot.2012.07.015

Google Scholar

[58] Stalbaum T, Nelson S E, Palmre V, et al. Multi degree of freedom IPMC sensor[C]/SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2014: 90562J-90562J-11.

DOI: 10.1117/12.2045671

Google Scholar

[59] Kamamichi N, Kaneda Y, Yamakita M, et al. Biped walking of passive dynamic walker with IPMC linear actuator[C]/SICE Annual Conference in Fukui. 2003: 212-217.

Google Scholar

[60] Yamakita M, Kamamichi N, Kaneda Y, et al. Development of an artificial muscle linear actuator using ionic polymer–metal composites[J]. Advanced Robotics, 2004, 18(4): 383-399.

DOI: 10.1163/156855304773822473

Google Scholar

[61] Yamakita M, Kamamichi N, Kozuki T, et al. Control of biped walking robot with IPMC linear actuator[C]/Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on. IEEE, 2005: 48-53.

DOI: 10.1109/aim.2005.1500964

Google Scholar

[62] Wang B L, Yu M, He Q S, et al. Investigation on a Linear Actuator Using an Ionic Polymer-Metal Composite[J]. Applied Mechanics and Materials, 2014, 461: 358-363.

DOI: 10.4028/www.scientific.net/amm.461.358

Google Scholar

[63] Xu Y, Zhao G, Ma C S, et al. Research on Preparation and Stacking Performance of IPMC[C]/Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2014, 21: 45-53.

DOI: 10.4028/www.scientific.net/jbbbe.21.45

Google Scholar

[64] Farid M, Gang Z, Linh Khuong T, et al. Grasshopper Knee Joint–Inverse Kinematic Modeling and Simulation of Ionic Polymer Metal Composites (IPMC) Actuators[J]. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 2014, 19: 1-11.

DOI: 10.4028/www.scientific.net/jbbte.19.1

Google Scholar

[65] Farid M, Gang Z, Linh Khuong T, et al. Grasshopper knee joint-Torque Analysis of actuators using Ionic Polymer Metal Composites (IPMC)[J]. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 2014, 19: 13-23.

DOI: 10.4028/www.scientific.net/jbbte.19.13

Google Scholar