[1]
Farid M, Zhao G, Khuong T L, et al. Biomimetic Applications of Ionic Polymer Metal Composites (IPMC) Actuators-A Critical Review[C]/Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2014, 20: 1-10.
DOI: 10.4028/www.scientific.net/jbbbe.20.1
Google Scholar
[2]
Shahinpoor M, Kim K J. Ionic polymer-metal composites: I. Fundamentals[J]. Smart materials and structures, 2001, 10(4): 819.
DOI: 10.1088/0964-1726/10/4/327
Google Scholar
[3]
Hunter I W, Lafontaine S. A comparison of muscle with artificial actuators[C]/Solid-State Sensor and Actuator Workshop, 1992. 5th Technical Digest., IEEE. IEEE, 1992: 178-185.
DOI: 10.1109/solsen.1992.228297
Google Scholar
[4]
Oguro K, Kawami Y, Takenaka H. Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage[J]. Journal of Micromachine Society, 1992, 5(1): 27-30.
Google Scholar
[6]
Shahinpoor M. Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles[J]. Smart Materials and Structures, 1992, 1(1): 91.
DOI: 10.1088/0964-1726/1/1/014
Google Scholar
[6]
Sadeghipour K, Salomon R, Neogi S. Development of a novel electrochemically active membrane and'smart'material based vibration sensor/damper[J]. Smart Materials and Structures, 1992, 1(2): 172.
DOI: 10.1088/0964-1726/1/2/012
Google Scholar
[7]
Nemat-Nasser S, Wu Y. Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms[J]. Journal of Applied Physics, 2003, 93(9): 5255-5267.
DOI: 10.1063/1.1563300
Google Scholar
[8]
Lu Z, Lanagan M, Manias E, et al. Two-port transmission line technique for dielectric property characterization of polymer electrolyte membranes[J]. The Journal of Physical Chemistry B, 2009, 113(41): 13551-13559.
DOI: 10.1021/jp9057115
Google Scholar
[9]
Oguro K, Fujiwara N, Asaka K, et al. Polymer electrolyte actuator with gold electrodes[C]/1999 Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 1999: 64-71.
DOI: 10.1117/12.349698
Google Scholar
[10]
Lu Z, Manias E, Macdonald D D, et al. Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy[J]. The Journal of Physical Chemistry A, 2009, 113(44): 12207-12214.
DOI: 10.1021/jp9059246
Google Scholar
[11]
Wang J, Xu C, Taya M, et al. A Flemion-based actuator with ionic liquid as solvent[J]. Smart Materials and Structures, 2007, 16(2): S214.
DOI: 10.1088/0964-1726/16/2/s03
Google Scholar
[12]
Onishi K, Sewa S, Asaka K, et al. The effects of counter ions on characterization and performance of a solid polymer electrolyte actuator[J]. Electrochimica Acta, 2001, 46(8): 1233-1241.
DOI: 10.1016/s0013-4686(00)00695-2
Google Scholar
[13]
Tadokoro S, Yamagami S, Takamori T, et al. Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion[C]/SPIE's 7th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 2000: 92-102.
DOI: 10.1117/12.387767
Google Scholar
[14]
Chen Q, Xiong K, Bian K, et al. Preparation and performance of soft actuator based on IPMC with silver electrodes[J]. Frontiers of Mechanical Engineering in China, 2009, 4(4): 436-440.
DOI: 10.1007/s11465-009-0054-5
Google Scholar
[15]
Bar-Cohen Y. Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges[M]. Bellingham, WA: SPIE press, (2004).
DOI: 10.1117/3.547465
Google Scholar
[16]
Chen Q, Xiong K, Bian K, et al. Preparation and performance of soft actuator based on IPMC with silver electrodes[J]. Frontiers of Mechanical Engineering in China, 2009, 4(4): 436-440.
DOI: 10.1007/s11465-009-0054-5
Google Scholar
[17]
Yi A, Ke X, Na G. Experimental Research on IPMC Material Tensile Samples [J][J]. Acta Aeronautica Et Astronautica Sinica, 2009, 5: 035.
Google Scholar
[18]
Lei H, Li W, Zhu G, et al. Evaluation of encapsulated ipmc sensor based on thick parylene coating[C]/ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012: 35-42.
DOI: 10.1115/smasis2012-7975
Google Scholar
[19]
Luo B, Zhu Z, WANG Y, et al. Research on the stability and packaging technology of IPMC[J]. Journal of Functional Materials, 2012, 8: 004.
Google Scholar
[20]
Punning A, Kruusmaa M, Aabloo A. Surface resistance experiments with IPMC sensors and actuators[J]. Sensors and Actuators A: Physical, 2007, 133(1): 200-209.
DOI: 10.1016/j.sna.2006.03.010
Google Scholar
[21]
Shahinpoor M, Kim K J. The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles[J]. Smart Materials and Structures, 2000, 9(4): 543.
DOI: 10.1088/0964-1726/9/4/318
Google Scholar
[22]
Kim K J, Shahinpoor M. Effect of the surface-electrode resistance on the actuation of ionic polymer-metal composite (IPMC) artificial muscles[C]/1999 Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 1999: 308-319.
DOI: 10.1117/12.349703
Google Scholar
[23]
Lee S, Park H, Pandita S D, et al. Performance improvement of IPMC (ionic polymer metal composites) for a flapping actuator[J]. International Journal of Control Automation and Systems, 2006, 4(6): 748.
Google Scholar
[24]
Wang J, Xu C, Taya M, et al. A Flemion-based actuator with ionic liquid as solvent[J]. Smart Materials and Structures, 2007, 16(2): S214.
DOI: 10.1088/0964-1726/16/2/s03
Google Scholar
[25]
Lee J W, Yoo Y T. Anion effects in imidazolium ionic liquids on the performance of IPMCs[J]. Sensors and Actuators B: Chemical, 2009, 137(2): 539-546.
DOI: 10.1016/j.snb.2009.01.041
Google Scholar
[26]
Lee H K, Choi N J, Jung S, et al. Ionic polymer-metal composites (IPMCs) containing Cu/Ni electrodes and ionic liquids for durability[C]/SPIE Europe Microtechnologies for the New Millennium. International Society for Optics and Photonics, 2009: 73620I-73620I-8.
DOI: 10.1117/12.821169
Google Scholar
[27]
Jin N, Wang B, Bian K, et al. Performance of ionic polymer-metal composite (IPMC) with different surface roughening methods[J]. Frontiers of Mechanical Engineering in China, 2009, 4(4): 430-435.
DOI: 10.1007/s11465-009-0053-6
Google Scholar
[28]
Xu Y, Zhao G, Zhu Y M, et al. Analysis of Characteristics and Applications of IPMC Material Using Nafion Membrane[J]. Applied Mechanics and Materials, 2014, 461: 342-346.
DOI: 10.4028/www.scientific.net/amm.461.342
Google Scholar
[29]
Li C, Sun G, Ren S, et al. Casting Nafion–sulfonated organosilica nano-composite membranes used in direct methanol fuel cells[J]. Journal of membrane science, 2006, 272(1): 50-57.
DOI: 10.1016/j.memsci.2005.07.032
Google Scholar
[30]
Silva R F, De Francesco M, Pozio A. Solution-cast Nafion< sup>®</sup> ionomer membranes: preparation and characterization[J]. Electrochimica Acta, 2004, 49(19): 3211-3219.
DOI: 10.1016/j.electacta.2004.02.035
Google Scholar
[31]
Lian Y, Liu Y, Jiang T, et al. Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator[J]. The Journal of Physical Chemistry C, 2010, 114(21): 9659-9663.
DOI: 10.1021/jp101337h
Google Scholar
[32]
He Q, Yu M, Ding Y, et al. Synthesis and characterization of multiwalled carbon nanotube/IPMC actuator for imitating locomotion of gecko's toes[C]/SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2012: 83401M-83401M-8.
DOI: 10.1117/12.913764
Google Scholar
[33]
Yip J, Ding F, Yick K L, et al. Tunable carbon nanotube ionic polymer actuators that are operable in dry conditions[J]. Sensors and Actuators B: Chemical, 2012, 162(1): 76-81.
DOI: 10.1016/j.snb.2011.12.038
Google Scholar
[34]
Yang W, Choi H, Choi S, et al. Carbon nanotube–graphene composite for ionic polymer actuators[J]. Smart Materials and Structures, 2012, 21(5): 055012.
DOI: 10.1088/0964-1726/21/5/055012
Google Scholar
[35]
Xu Y, Ding Y, Deng K, et al. Fabrication and properties of carbon nanotube and graphene for ionic polymer actuator[J]. Journal of materials science and engineering, 2013, 31(3).
Google Scholar
[36]
Ismail Y A, Shin S R, Shin K M, et al. Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization[J]. Sensors and Actuators B: Chemical, 2008, 129(2): 834-840.
DOI: 10.1016/j.snb.2007.09.083
Google Scholar
[37]
Li J, Ma W, Song L, et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan[J]. Nano letters, 2011, 11(11): 4636-4641.
DOI: 10.1021/nl202132m
Google Scholar
[38]
Shahinpoor M. Chitosan/IPMC Artificial Muscles[J]. Advances in Science and Technology, 2013, 79: 32-40.
Google Scholar
[39]
Armand M, Endres F, MacFarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature materials, 2009, 8(8): 621-629.
DOI: 10.1038/nmat2448
Google Scholar
[40]
Lee D Y, Park I S, Lee M H, et al. Ionic polymer–metal composite bending actuator loaded with multi-walled carbon nanotubes[J]. Sensors and Actuators A: Physical, 2007, 133(1): 117-127.
DOI: 10.1016/j.sna.2006.04.005
Google Scholar
[41]
Choi J J, Lee J H, Hahn B D, et al. Co-firing of PZN-PZT/Ag multilayer actuator prepared by tape-casting method[J]. Materials Research Bulletin, 2008, 43(2): 483-490.
DOI: 10.1016/j.materresbull.2007.02.033
Google Scholar
[42]
Sugino T, Kiyohara K, Takeuchi I, et al. Actuator properties of the complexes composed by carbon nanotube and ionic liquid: the effects of additives[J]. Sensors and Actuators B: Chemical, 2009, 141(1): 179-186.
DOI: 10.1016/j.snb.2009.06.002
Google Scholar
[43]
Mukai K, Asaka K, Kiyohara K, et al. High performance fully plastic actuator based on ionic-liquid-based bucky gel[J]. Electrochimica Acta, 2008, 53(17): 5555-5562.
DOI: 10.1016/j.electacta.2008.02.113
Google Scholar
[44]
Terasawa N, Takeuchi I, Matsumoto H. Electrochemical properties and actuation mechanisms of actuators using carbon nanotube-ionic liquid gel[J]. Sensors and Actuators B: Chemical, 2009, 139(2): 624-630.
DOI: 10.1016/j.snb.2009.03.057
Google Scholar
[45]
Terasawa N, Takeuchi I. Electrochemical property and actuation mechanism of an actuator using three different electrode and same electrolyte in air: Carbon nanotube/ionic liquid/polymer gel electrode, carbon nanotube/ionic liquid gel electrode and Au paste as an electrode[J]. Sensors and Actuators B: Chemical, 2010, 145(2): 775-780.
DOI: 10.1016/j.snb.2010.01.043
Google Scholar
[46]
Kamamichi N, Maeba T, Yamakita M, et al. Fabrication of bucky gel actuator/sensor devices based on printing method[C]/Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008: 582-587.
DOI: 10.1109/iros.2008.4651100
Google Scholar
[47]
Tekin E, Smith P J, Schubert U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles[J]. Soft Matter, 2008, 4(4): 703-713.
DOI: 10.1039/b711984d
Google Scholar
[48]
Chung J W, Lee H S, Lee K, et al. Method of forming thick layer by screen printing and method of forming piezoelectric actuator of inkjet head: U.S. Patent 7, 677, 707[P]. 2010-3-16.
Google Scholar
[49]
Shin K Y, Hong J Y, Jang J. Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing[J]. Chem. Commun., 2011, 47(30): 8527-8529.
DOI: 10.1039/c1cc12913a
Google Scholar
[50]
Yeom S W, Oh I K. A biomimetic jellyfish robot based on ionic polymer metal composite actuators[J]. Smart materials and structures, 2009, 18(8): 085002.
DOI: 10.1088/0964-1726/18/8/085002
Google Scholar
[51]
Jeon J H, Oh I K. Selective growth of platinum electrodes for MDOF IPMC actuators[J]. Thin Solid Films, 2009, 517(17): 5288-5292.
DOI: 10.1016/j.tsf.2009.03.111
Google Scholar
[52]
Leang K K, Shan Y, Song S, et al. Integrated sensing for IPMC actuators using strain gages for underwater applications[J]. Mechatronics, IEEE/ASME Transactions on, 2012, 17(2): 345-355.
DOI: 10.1109/tmech.2011.2105885
Google Scholar
[53]
HAO L N, Xu S, LIU B. A Miniature Fish-like Robot with Infrared Remote Receiver and IPMC Actuator [J]. Journal of Northeastern University (Natural Science), 2009, 6: 004.
Google Scholar
[54]
Aw K C, Praneeth S V. Low frequency vibration energy harvesting from human motion using IPMC cantilever with electromagnectic transduction[C]/Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference on. IEEE, 2013: 645-648.
DOI: 10.1109/nems.2013.6559812
Google Scholar
[55]
Kim K J, Kim S J, Wong J. Methods of fabricating multi-degree of freedom shaped electroactive polymer actuators/sensors for catheters: U.S. Patent Application 13/787, 587[P]. 2013-3-6.
Google Scholar
[56]
HE H, ZHAN X, WANG L, et al. The preparation and electromechanical characteristic of the multilayer artificial muscle[J]. Journal of Functional Materials, 2011: S3.
Google Scholar
[57]
Kim S J, Pugal D, Wong J, et al. A bio-inspired multi degree of freedom actuator based on a novel cylindrical ionic polymer–metal composite material[J]. Robotics and Autonomous Systems, 2014, 62(1): 53-60.
DOI: 10.1016/j.robot.2012.07.015
Google Scholar
[58]
Stalbaum T, Nelson S E, Palmre V, et al. Multi degree of freedom IPMC sensor[C]/SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2014: 90562J-90562J-11.
DOI: 10.1117/12.2045671
Google Scholar
[59]
Kamamichi N, Kaneda Y, Yamakita M, et al. Biped walking of passive dynamic walker with IPMC linear actuator[C]/SICE Annual Conference in Fukui. 2003: 212-217.
Google Scholar
[60]
Yamakita M, Kamamichi N, Kaneda Y, et al. Development of an artificial muscle linear actuator using ionic polymer–metal composites[J]. Advanced Robotics, 2004, 18(4): 383-399.
DOI: 10.1163/156855304773822473
Google Scholar
[61]
Yamakita M, Kamamichi N, Kozuki T, et al. Control of biped walking robot with IPMC linear actuator[C]/Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on. IEEE, 2005: 48-53.
DOI: 10.1109/aim.2005.1500964
Google Scholar
[62]
Wang B L, Yu M, He Q S, et al. Investigation on a Linear Actuator Using an Ionic Polymer-Metal Composite[J]. Applied Mechanics and Materials, 2014, 461: 358-363.
DOI: 10.4028/www.scientific.net/amm.461.358
Google Scholar
[63]
Xu Y, Zhao G, Ma C S, et al. Research on Preparation and Stacking Performance of IPMC[C]/Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2014, 21: 45-53.
DOI: 10.4028/www.scientific.net/jbbbe.21.45
Google Scholar
[64]
Farid M, Gang Z, Linh Khuong T, et al. Grasshopper Knee Joint–Inverse Kinematic Modeling and Simulation of Ionic Polymer Metal Composites (IPMC) Actuators[J]. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 2014, 19: 1-11.
DOI: 10.4028/www.scientific.net/jbbte.19.1
Google Scholar
[65]
Farid M, Gang Z, Linh Khuong T, et al. Grasshopper knee joint-Torque Analysis of actuators using Ionic Polymer Metal Composites (IPMC)[J]. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 2014, 19: 13-23.
DOI: 10.4028/www.scientific.net/jbbte.19.13
Google Scholar