[1]
Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles –Reality Potential and Challenges, PM136, 2nd edition, SPIE Press, Bellingham, Washington, USA, 2004, p.1–765.
DOI: 10.1117/3.547465
Google Scholar
[2]
R. Tiwari, E. Garcia, The state of understanding of ionic polymer metal composite architecture: a review, Smart Mater. Struct. 20 (2011) 083001.
DOI: 10.1088/0964-1726/20/8/083001
Google Scholar
[3]
W. -S. Chu, K. -T. Lee, S. -H. Song, M. -W. Han, J. -Y. Lee, H. -S. Kim, M. -S. Kim, Y. -J. Park, K. -J. Cho, S.H. Ahn, Review of biomimetic underwater robots using smart actuators, Int. J. Precis. Eng. Manuf. 13 (7) (2012) 1281–1292.
DOI: 10.1007/s12541-012-0171-7
Google Scholar
[4]
G. -H. Feng, J. -W. Tsai, Micromachined optical fiber enclosed 4-electrode IPMC actuator with multidirectional controlability for biomedical application, Biomed. Microdev. 13 (1) (2011) 167–177.
DOI: 10.1007/s10544-010-9482-6
Google Scholar
[5]
A. Firouzeh, M. Ozmaeian, A. Alasty, A. Irajizad, An IPMC-made deformable ring-like robot, Smart Mater. Struct. 21 (2012) 105031. 140 G.
DOI: 10.1088/0964-1726/21/6/065011
Google Scholar
[6]
Y. Bar-Cohen, Int. J. Aeronautical Space Sci. 13 (1) (2012) 1–13.
Google Scholar
[7]
Jeon J H, Yeom S-W and Oh I-K 2008 Fabrication and actuation of ionic polymer metal composites patterned by combining electroplating with electroless plating Composites A 39 588–96.
DOI: 10.1016/j.compositesa.2007.07.013
Google Scholar
[8]
Kim K J, Pugal D and Leang K K 2011 A twistable ionic polymer–metal composite artificial muscle for marine applications Mar. Technol. Soc. J. 45 83–98.
DOI: 10.4031/mtsj.45.4.9
Google Scholar
[9]
Francesco Rizzia, Antonio Qualtieria, Tommaso Dattomaa, b, Gianmichele Epifanic, Massimo De Vittorioa, Review Article - Biomimetics of underwater hair cell sensing , Microelectronic Engineering 132 (2015) 90–97.
DOI: 10.1016/j.mee.2014.10.011
Google Scholar
[10]
L. Shi, S. Guo, K. Asaka, A bio-inspired underwater microrobot with compact structure and multifunctional locomotion, in: Proceedings of 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2011, Budapest, Hungary, 2011, p.203.
DOI: 10.1109/aim.2011.6026989
Google Scholar
[11]
S. Heo, T. Wiguna, H. Park, N. Goo, Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators, Journal of Bionic Engineering 4 (3) (2007) 151–158.
DOI: 10.1016/s1672-6529(07)60027-4
Google Scholar
[12]
Z. Wang, G. Hang, J. Li, Y. Wang, K. Xiao, A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin, Sensors and Actuators A: Physical 144(2)(2008)354–360.
DOI: 10.1016/j.sna.2008.02.013
Google Scholar
[13]
B. Kim M.G. Lee Y.P. Lee,Y. Kim,G. Lee, An earth worm-like microrobot using shape memory alloy actuator, Sensors and Actuators A: Physical 125 (2) (2006) 429–437.
DOI: 10.1016/j.sna.2005.05.004
Google Scholar
[14]
S. Liu, T. Huang, J. Yen, Comparison of sensor fusion methods for an SMA-based hexapod biomimetic robot, Robotics and Autonomous Systems 58 (5) (2010) 737–744.
DOI: 10.1016/j.robot.2009.10.006
Google Scholar
[15]
S. Yeom, I. Oh, A biomimetic jellyfish robot based on ionic polymer metal composite actuators, Journal of Smart Materials and Structures 18 (2009) 1–16.
DOI: 10.1088/0964-1726/18/8/085002
Google Scholar
[16]
W. Zhang, S. Guo, K. Asaka, A new type of hybrid fish-like microrobot, International Journal of Automation and Computing 3 (4) (2006)358–365.
DOI: 10.1007/s11633-006-0358-4
Google Scholar
[17]
L.N. Hao, S. Xu, B. Liu, A miniature fish-like robot with infrared remote receiver and IPMC actuator, Journal of Northeastern University (Natural ScienceEdition)30(2009)773–776(inChinese).
Google Scholar
[18]
M. Hosseinipour and M. Elahinia, Design and simulation of an intra-ventricular assistive device for end stage congestive heart failure patients, Bioinspiration, Biomimetics, and Bioreplication 2013, Proc. of SPIE Vol. 8686, 86860M.
DOI: 10.1117/12.2013846
Google Scholar
[19]
W. Jong Yoon, Per G. Reinhall, Eric J. Seibel, Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope , Sensors and Actuators A 133 (2007) 506–517.
DOI: 10.1016/j.sna.2006.04.037
Google Scholar
[20]
Seong J. Kim, David Pugal , Johnson Wong , Kwang J. Kim , Woosoon Yim, A bio-inspired multi degree of freedom actuator based on a novel cylindrical ionic polymer-metal composite material, Robotics and Autonomous Systems 62(2014) 53-60.
DOI: 10.1016/j.robot.2012.07.015
Google Scholar
[21]
Guo-Hua Feng, Wei-Lun Huang, A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications, MaterialsScience and Engineering C 45(2014).
DOI: 10.1016/j.msec.2014.09.018
Google Scholar
[22]
Jiayu Liu, Yanjie Wang, Dongxu Zhao, Chi Zhang, Hualing Chen, Dichen Lia, Design and fabrication of an IPMC-embedded tube for minimally invasive surgery applications, Electroactive Polymer Actuators and Devices (EAPAD) 2014, Proc. of SPIE Vol. 9056, 90563K.
DOI: 10.1117/12.2050562
Google Scholar
[23]
Doan Ngoc Chi Namb, Kyoung Kwan Ahna, Design of an IPMC diaphragm for micropump application , Sensors and Actuators A 187 (2012) 174–182.
DOI: 10.1016/j.sna.2012.08.027
Google Scholar
[24]
Andrew J. McDaid, Kean C. Aw, Sheng Q. Xie and Enrico Haemmerle, Optimal force control of an IPMC actuated micromanipulator for safe cell handling , Third International Conference on Smart Materials and Nanotechnology in Engineering, Proc. of SPIE Vol. 8409.
DOI: 10.1117/12.914668
Google Scholar
[25]
R.K. Jain, S. Datta, S. Majumder, Design and control of an IPMC artificial muscle finger for micro gripper using EMG signal , Mechatronics 23 (2013) 381–394.
DOI: 10.1016/j.mechatronics.2013.02.008
Google Scholar
[26]
MartinJ., D. Otis , Electromechanical Characterization and Locomotion Control of IPMC BioMicroRobot, Hindawi Publishing Corporation Advances in Materials Science and Engineering Volume 2013, Article ID683041, 17pages.
DOI: 10.1155/2013/683041
Google Scholar
[27]
Farid A. Tolbah, Magdy M. Abdelhameed, Mohammed I. Awad , Sabreen A. Abdelwahab, Modeling And Simulation of A New Bioinspired Muscle Actuator, 15th International Workshop on Research and Education in Mechatronics (REM), Elgouna, Egypt, September 9-11, (2014).
DOI: 10.1109/rem.2014.6920230
Google Scholar
[28]
K. Byungkyu, et al., A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators, Smart Materials and Structures 14 (2005)1579.
DOI: 10.1088/0964-1726/14/6/051
Google Scholar
[29]
Y. Woosoon, et al., An artificial muscle actuator for biomimetic underwater propulsors, Bioinspiration and Biomimetics 2(2007)S31.
DOI: 10.1088/1748-3182/2/2/s04
Google Scholar
[30]
Shuxiang Guo, Liwei Shi, Nan Xiao, Kinji Asaka, A biomimetic underwater microrobot with multifunctional locomotion, Robotics and Autonomous Systems 60(2012) 1472-1483.
DOI: 10.1016/j.robot.2012.07.013
Google Scholar
[31]
Yi-chu Chang, and Won-jong Kim, Aquatic Ionic-Polymer-Metal-Composite Insectile Robot With Multi-DOF Legs , IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 18, NO. 2, APRIL 2013 547.
DOI: 10.1109/tmech.2012.2210904
Google Scholar
[32]
Liwei Shi, Shuxiang Guo, Shilian Mao, Maoxun Li and Kinji Asaka, Development of a Lobster-Inspired Underwater Microrobot, International Journal of Advanced Robotic Systems Vol. 10, 44, (2013).
DOI: 10.5772/54868
Google Scholar
[33]
JoelJ. Hubbard, Maxwell Fleming, Viljar Palmre, David Pugal, KwangJ. Kim, and KamK. Leang, Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics , IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 39, NO. 3, JULY (2014).
DOI: 10.1109/joe.2013.2259318
Google Scholar
[34]
Viljar Palmre, Joel J Hubbard, Maxwell Fleming, David Pugal, Sungjun Kim, Kwang J Kim and Kam K Leang, An IPMC-enabled bio-inspired bending/twisting fin for underwater applications, IOP PUBLISHING SMART MATERIALS AND STRUCTURES, Smart Mater. Struct. 22 (2013).
DOI: 10.1088/0964-1726/22/1/014003
Google Scholar
[35]
Joseph Najem and Donald J. Leo, A bio-inspired bell kinematics design of a jellyfish robot using ionic polymer metal composites actuators, Electroactive Polymer Actuators and Devices (EAPAD) 2012, Proc. of SPIE Vol. 8340, 83401Q.
DOI: 10.1117/12.915170
Google Scholar
[36]
Zheng Chen, Tae I. Um a & Hilary Bart-Smith, Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles, International Journal of Smart and Nano Materials Vol. 3, No. 4, December 2012, 296–308.
DOI: 10.1080/19475411.2012.686458
Google Scholar
[37]
Abdulsadda, A. and Tan, X., Underwater source localization using an IPMC-based artificial lateral line, in [IEEE International Conference on Robotics and Automation], 2719–2724 (2011).
DOI: 10.1109/icra.2011.5980545
Google Scholar
[38]
Hong Lei, Wen Li, Microfabrication of IPMC cilia for bio-inspired flow sensing, Electroactive Polymer Actuators and Devices (EAPAD) 2012, Proc. of SPIE Vol. 8340, 83401A.
DOI: 10.1117/12.917525
Google Scholar
[39]
Yan Zhou, Cheng-Wei Chiu, Carlos J. Sanchez, Jorge M. González, Benjamin Epstein, David Rhodes, S. Bradleigh Vinson, Hong Liang, Sound Modulation in Singing Katydids Using Ionic Polymer-Metal Composites (IPMCs) , Journal of Bionic Engineering 10 (2013).
DOI: 10.1016/s1672-6529(13)60240-1
Google Scholar
[40]
M. Shahinpoor, Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites, Bioinspiration & Biomimetics, Vol. 6, No. 4, 046004, pp.1-11, (2011).
DOI: 10.1088/1748-3182/6/4/046004
Google Scholar
[41]
Liwei Shi, Yanlin He, Shuxiang Guo, Hiroki Kudo, Maoxun Li, and Kinji Asaka, IPMC Actuator-based a Movable Robotic Venus Flytrap , Proceedings of 2013 ICME International Conference on Complex Medical Engineering May 25 - 28, Beijing, China.
DOI: 10.1109/iccme.2013.6548272
Google Scholar
[42]
Kamamichi N., Kaneda Y., and Yamakita M., 2003, Biped walking of passive dynamic walker with IPMC linear actuator, SICE Annual Conference, pp.212-217.
Google Scholar
[43]
Milad Hosseinipour, Mohammad Elahinia, STABLE BIPEDAL LOCOMOTION USING BIOMIMETIC IPMC ACTUATORS , Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2012 , Georgia, USA.
DOI: 10.1115/smasis2012-8191
Google Scholar
[44]
Min Yu, Qingsong He, Dingshan Yu, Xiaoqing Zhang, Aihong Ji, Hao Zhang, Ce Guo, and Zhendong Dai, Efficient active actuation to imitate locomotion of gecko's toes using an ionic polymermetal composite actuator enhanced by carbon nanotubes, Applied Physics Letters 101, 163701 (2012).
DOI: 10.1063/1.4756999
Google Scholar