[1]
Zhang Chunyan, Zeng Rongchang, Chen Jun, et al. Research of Ca-P bio ceramic coating by liquid phase deposition on the surface of AZ31 magnesium alloy[J]. Rare Metal Materials Science and Engineering, 2009, 38(8): 1363-1367.
Google Scholar
[2]
Upadhyay D, Panchal M A, Dubey R S, et al. Corrosion of alloys used in dentistry: a review[J]. Materials Science and Engineering: A, 2006, 432(1): 1-11.
DOI: 10.1016/j.msea.2006.05.003
Google Scholar
[3]
Dearnley P A. A brief review of test methodologies for surface-engineered biomedical implant alloys[J]. Surface and Coatings Technology, 2005, 198(1): 483-490.
DOI: 10.1016/j.surfcoat.2004.10.067
Google Scholar
[4]
Al-Abdullat Y, Tsutsumi S, Nakajima N, et al. Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank's solution for new biomaterial applications[J]. Materials transactions-JIM, 2001, 42(8): 1777-1780.
DOI: 10.2320/matertrans.42.1777
Google Scholar
[5]
Liu Zhendong, Fan Qingyu. Stress shielding effect-looking for lost keys[J]. Journal of Traumatic Orthopaedics, 2002, 4(1): 62-64.
Google Scholar
[6]
Deng Xiguang, Wang Weiqiang, Qi Min. Corrosion Behavior of AZ31 magnesium alloy in SBF[J]. Journal of Functional Materials, 2009(11): 1884-1887.
Google Scholar
[7]
Gao Cheng, Hu De, Song Changjiang. The effect of medical magnesium alloy's degradation on the human body [J] . Journal of Functional Materials, 2012, 43 (19): 2577-2583.
Google Scholar
[8]
Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review[J]. Biomaterials, 2006, 27(9): 1728-1734.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[9]
Zhao Changli, Zhang Shaoxiang, Ho Cheehui, et a. Study of PLGC coating on bio-absorbable My alloy [J]. Journal of Functional Materials, 2008, 39(6): 987-989.
Google Scholar
[10]
Song G, Song S. A possible biodegradable magnesium implant material[J]. Advanced Engineering Materials, 2007, 9(4): 298-302.
DOI: 10.1002/adem.200600252
Google Scholar
[11]
YU Chunhang, Shao Honghong, XU Xiaojing, et a. Research on microstructures and blood compatibility of Ta-doped TiO2 films on ultrafine-grained Tiournal of Functional Materials[J]. Journal of Functional Materials, 2010, 41(3): 552-552.
Google Scholar
[12]
Chen Junying, Wan Guojiangr, Leng Yongxiang, et a. Anticoagulant and Plants of human umbilical vein endothelial cells on the surface of Ti-O film[J]. Science in China, Ser. E, 2006, 35 (11): 1137-1144.
Google Scholar
[13]
Maitz M F, Pham M T, Wieser E, et al. Blood compatibility of titanium oxides with various crystal structure and element doping[J]. Journal of biomaterials applications, 2003, 17(4): 303-319.
DOI: 10.1177/0885328203017004005
Google Scholar
[14]
SHI Ping, YU Qian. Inducing effects of annealing temperature and TiO2 structure on deposition of hydroxyapatite[J]. Transactions of Materials and Heat Treatment, 2010 (1): 44-47.
Google Scholar
[15]
Chao Chunan. Corrosion principle[M]. Beijing: Chemical Industry Press, 2004, 4.
Google Scholar
[16]
Hu Guodong. Haemacompatibility assessment of ployurethanes[J]. Foreign Medical Sciences Biomedical Engineering. 2002, 25(6): 271-273.
Google Scholar
[17]
Wang Z M, Li L, Zheng Z B, etal. Preparation and anticoagulation activity of sodium cellulose sulfate[J]. International Journal of Biological Macromolecules. 2007, 41: 376-382.
DOI: 10.1016/j.ijbiomac.2007.05.007
Google Scholar
[18]
Yu Chunhang, Shao Honghong , XU Xiaojing Zhai Rui. Influence of Mg Interlayer Film on Microstructures and Kinetic Clotting Time of TiO2 Film on Nano-grained Ti, Chinese Journal of Materials Research[J], 2010, 24(6): 669.
Google Scholar
[19]
Meng Jie, Xu Haiyan. Developments in Understanding of Interactions between Blood and Biomaterials at Molecular and Cellular Levels[J]. Journal of Biomedical Engineering, 2005, 22(6): 1271-1274.
Google Scholar
[20]
Feng Qingling. Introduction of biological materials[M]. Tsinghua University Press, 2009: 314.
Google Scholar
[21]
Kanno M, Kawakami H, Nagaoka S, et al. Biocompatibility of fluorinated polyimide[J]. Journal of biomedical materials research, 2002, 60(1): 53-60.
DOI: 10.1002/jbm.1280
Google Scholar
[22]
Bolz A, Schaldach M. Artificial Heart Valves: Improved Blood Compatibility by PECVD a-SiC: H Coating[J]. Artificial organs, 1990, 14(4): 260-269.
DOI: 10.1111/j.1525-1594.1990.tb02967.x
Google Scholar
[23]
Chen Junying, Yang Ping. Preparation and Properties study of Ta5+doped titanium dioxide film in biomedical use[J]. Chinese Journal of Biomedical Engineering, 2002, 21(5): 411-416.
Google Scholar
[24]
Yu Chun-hang, Shao Hong-hong. Research on microstructures and blood compatibility of Ta-doped TiO2 films on ultrafine-grained Ti, Chinese Journal of Materials Research[J], 2010, 3(41): 552-554.
Google Scholar
[25]
C. L. Chu ,R. M. Wang ,T. Hu ,L. H. Yin . XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy[J]. J Mater Sci: Mater Med (2009) 20: 223-228.
DOI: 10.1007/s10856-008-3563-6
Google Scholar