A Comparative Study of the Mechanical Properties of Hierarchical Trabecular Bone with other Approaches and Existing Experimental Data

Article Preview

Abstract:

The bone is a hierarchically structured material with mechanical properties depending on its architecture at all scales. Water plays an important role in the bio-mineralization process and serves as a plasticizer, enhancing the toughness of bone. In this paper, a trabecular bone multiscale model based on finite element analysis was developed to link scales from sub-nanoscopic scale (Microfibril) to sub-microscopic (Lamella) in order to predict the orthotropic properties of bone at different structural level. To identify the orthotropic properties, an inverse identification algorithm is used. Furthermore, the effect of water is incorporated. Good agreement is found between theoretical and experimental results.

You might also be interested in these eBooks

Info:

Pages:

76-84

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hamed Elham, et al. 2012. Multiscale Modeling of Elastic Properties of Trabecular Bone, J. Royal Society Interface 9 (72), 1654-1673.

Google Scholar

[2] Yoon, Y.J., Cowin, S.C.: The estimated elastic constants for a single bone osteonal lamella. Biomech. Model. Mechanobiol. 7, 1–11 (2008).

DOI: 10.1007/s10237-006-0072-8

Google Scholar

[3] Rho J.Y., Kuhn-Spearing L., Zioupos P. 1998. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys.; 20, 92–102.

DOI: 10.1016/s1350-4533(98)00007-1

Google Scholar

[4] Vaughan T. J, McCarthy C. T, McNamara L.M. 2012. A three scale finite element investigation into the effects of tissue mineralization and lamellar organization in human cortical and trabecular bone. Journal of the mechanical behavior of biomedical materials, 50-62.

DOI: 10.1016/j.jmbbm.2012.03.003

Google Scholar

[5] Khaterchi H., Belhadjsalah H. A three scale identification of orthotropic properties of trabecular bone, CMBBE, 2013, vol 16. NO. SI., 272-274.

DOI: 10.1080/10255842.2013.815844

Google Scholar

[6] Hamed, E., Lee,Y., Jasiuk,I., 2010. Multiscale modeling of elastic properties of trabecular bone. Acta Mechanica 213(1–2), 131–154.

DOI: 10.1007/s00707-010-0326-5

Google Scholar

[7] Hamed, E., Lee,Y., Jasiuk,I., 2010. Multiscale modeling of elastic properties of cortical bone. Acta Mechanica 213(1–2), 131–154.

DOI: 10.1007/s00707-010-0326-5

Google Scholar

[8] Yuan F, Stock SR, Haeffner DR, Almer JD, Dunand DC, Brinson LC (2011). A new model to simulate the elastic properties of mineralized collagen fibril., Biomech Model Mechanobiol 10: 147–160.

DOI: 10.1007/s10237-010-0223-9

Google Scholar

[9] Hang F, Barber AH (2011). Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue, J. R. Soc. Interface 8: 500–505.

DOI: 10.1098/rsif.2010.0413

Google Scholar

[10] Almer JD, Stock SR (2007). Micromechanical response of mineral and collagen phases in bone., J Struct Biol 157: 365–370.

DOI: 10.1016/j.jsb.2006.09.001

Google Scholar

[11] Eppell SJ, Smith BN, Kahn H, Ballarini R (2006). Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils., Journal Of The Royal Society Interface 3(6): 117-121.

DOI: 10.1098/rsif.2005.0100

Google Scholar

[12] Buehler MJ (2008). Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies., Journal of the Mechanical Behaviour of Biomedical Materials 1(1): 59–67.

DOI: 10.1016/j.jmbbm.2007.04.001

Google Scholar

[13] Abdelwahed Barkaoui, Abdessalem Chamekh, Tarek Merzouki, Ridha Hambli and Ali Mkaddem (2013).

Google Scholar

[14] Martínez-Reina J, Domínguez J, García-Aznar JM. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Biomech Model Mechanobiol 2011; 10: 309–322.

DOI: 10.1007/s10237-010-0236-4

Google Scholar

[15] Yoon YJ, Cowin SC. An estimate of anisotropic poroelastic constants of an osteon. Biomechanics and Modeling in Mechanobiology 2008b; 7: 13–26.

DOI: 10.1007/s10237-006-0071-9

Google Scholar

[16] Rho JY, Zioupos P, Currey JD, Pharr GM. Microstructural elasticity and regional heterogeneity in aging human bone examined by nano-indentation. Journal of Biomechanics 2002; 35: 161–165.

DOI: 10.1016/s0021-9290(01)00199-3

Google Scholar

[17] Fan Z, Swadener JG, Rho JY, Roy ME, Pharr GM. Anisotropicproperties of human tibial cortical bone as measured by nanoindentation. Journal of Orthopaedic Research 2002; 20: 806–810.

DOI: 10.1016/s0736-0266(01)00186-3

Google Scholar

[18] Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecularbone lamellae measured by nanoindentation in the human femur. Journal of Biomechanics 1999; 32: 1005–1012.

DOI: 10.1016/s0021-9290(99)00111-6

Google Scholar

[19] Hoffler CE, Moore KE, Kozloff K, Zysset PK, Goldstein SA. Age, gender, and bone lamellae elastic moduli. Journal of Orthopaedic Research 2000; 18: 432–437.

DOI: 10.1002/jor.1100180315

Google Scholar

[20] Weiner S, Wagner HD. The material bone: structure mechanical function relations. Annual Review of Materials Research 1998; 28: 271–298.

DOI: 10.1146/annurev.matsci.28.1.271

Google Scholar