Dip Coated Magnesium-Substituted Hydroxyapatite Coatings on Magnesium Alloy for Biomedical Applications

Article Preview

Abstract:

Magnesium-substituted hydroxyapatite coatings have been deposited on magnesium alloy for biomedical applications by sol–gel technology. The Ca(10−x)Mgx(PO4)6(OH)2 coatings obtained, with magnesium contents up to x = 1.5, show dense and compact and with visible cracks. The results of Hydrogen (H2) evolution testing in Hank’s solution show that magnesium-substituted hydroxyapatite coatings can improve the corrosion resistance of magnesium alloy.

You might also be interested in these eBooks

Info:

Pages:

83-89

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Hornberger, S. Virtanen, A.R. Boccaccini, Biomedical coatings on magnesium alloys - a review, Acta Biomater, 8 (2012) 2442-2455.

DOI: 10.1016/j.actbio.2012.04.012

Google Scholar

[2] L. Gan, R. Pilliar, Calcium phosphate sol-gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part I: Synthesis and characterization, Biomaterials, 25 (2004) 5303-5312.

DOI: 10.1016/j.biomaterials.2003.12.038

Google Scholar

[3] M.H. Fathi, A. Hanifi, Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method, Mater Lett, 61 (2007) 3978-3983.

DOI: 10.1016/j.matlet.2007.01.028

Google Scholar

[4] M. Prabhu, K. Kavitha, P. Manivasakan, V. Rajendran, P. Kulandaivelu, Synthesis, characterization and biological response of magnesium-substituted nanobioactive glass particles for biomedical applications, Ceram Int, 39 (2013) 1683-1694.

DOI: 10.1016/j.ceramint.2012.08.011

Google Scholar

[5] H. Eshtiagh-Hosseini, M.R. Housaindokht, M. Chahkandi, Effects of parameters of sol–gel process on the phase evolution of sol–gel-derived hydroxyapatite, Mater Chem Phys, 106 (2007) 310-316.

DOI: 10.1016/j.matchemphys.2007.06.002

Google Scholar

[6] D. Wang, C. Chen, T. He, T. Lei, Hydroxyapatite coating on Ti6Al4V alloy by a sol-gel method, J Mater Sci Mater Med, 19 (2008) 2281-2286.

DOI: 10.1007/s10856-007-3338-5

Google Scholar

[7] A. Roy, S.S. Singh, M.K. Datta, B. Lee, J. Ohodnicki, P.N. Kumta, Novel sol–gel derived calcium phosphate coatings on Mg4Y alloy, Materials Science and Engineering: B, 176 (2011) 1679-1689.

DOI: 10.1016/j.mseb.2011.08.007

Google Scholar

[8] H. Tang, T.Z. Xin, F.P. Wang, Calcium Phosphate/Titania Sol-Gel Coatings on AZ31 Magnesium Alloy for Biomedical Applications, International Journal of Electrochemical Science, 8 (2013) 8115-8125.

DOI: 10.1016/s1452-3981(23)12872-0

Google Scholar

[9] H. Tang, T.Z. Xin, Y. Luo, F.P. Wang, In vitro degradation of AZ31 magnesium alloy coated with hydroxyapatite by sol-gel method, Mater Sci Technol-lond, 29 (2013) 547-552.

DOI: 10.1179/1743284712y.0000000180

Google Scholar

[10] R. Rojaee, M. Fathi, K. Raeissi, Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating, Materials Science & Engineering C-Materials for Biological Applications, 33 (2013) 3817-3825.

DOI: 10.1016/j.msec.2013.05.014

Google Scholar

[11] M.G. Ren, S. Cai, G.H. Xu, X.Y. Ye, Y. Dou, K. Huang, X.X. Wang, Influence of heat treatment on crystallization and corrosion behavior of calcium phosphate glass coated AZ31 magnesium alloy by sol-gel method, J Non-cryst Solids, 369 (2013) 69-75.

DOI: 10.1016/j.jnoncrysol.2013.03.022

Google Scholar

[12] Y. Cai, S. Zhang, X. Zeng, Y. Wang, M. Qian, W. Weng, Improvement of bioactivity with magnesium and fluorine ions incorporated hydroxyapatite coatings via sol–gel deposition on Ti6Al4V alloys, Thin Solid Films, 517 (2009) 5347-5351.

DOI: 10.1016/j.tsf.2009.03.071

Google Scholar

[13] G. Qi, S. Zhang, K. Khor, C. Liu, X. Zeng, W. Weng, M. Qian, In vitro effect of magnesium inclusion in sol–gel derived apatite, Thin Solid Films, 516 (2008) 5176-5180.

DOI: 10.1016/j.tsf.2007.07.011

Google Scholar

[14] Q.H. Bao, Microstructure, Mechanical and Corrosion Properties of Mg-Y-Ca-Zn Alloy for Biomedical Applications, Journal of Biomimetics, Biomaterials, and Tissue Engineering, 17 (2013) 45-51.

DOI: 10.4028/www.scientific.net/jbbte.17.45

Google Scholar

[15] M. Salahshoor, Y.B. Guo, Biodegradation Control of Magnesium-calcium Biomaterial Via Adjusting Surface Integrity by Synergistic Cutting-burnishing, Procedia CIRP, 13 (2014) 143-149.

DOI: 10.1016/j.procir.2014.04.025

Google Scholar

[16] I. -S. Kim, P.N. Kumta, Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder, Materials Science and Engineering: B, 111 (2004) 232-236.

DOI: 10.1016/j.mseb.2004.04.011

Google Scholar

[17] D. -M. Liu, Q. Yang, T. Troczynski, Sol–gel hydroxyapatite coatings on stainless steel substrates, Biomaterials, 23 (2002) 691-698.

DOI: 10.1016/s0142-9612(01)00157-0

Google Scholar

[18] Q. Bao, K. Zhao, J. Liu, Characterization of wollastonite coatings prepared by sol–gel on Ti substrate, Journal of Coatings Technology and Research, 9 (2012) 189-193.

DOI: 10.1007/s11998-009-9236-7

Google Scholar

[19] A. Sharifnabi, M.H. Fathi, B. Eftekhari Yekta, M. Hossainalipour, The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant, Appl Surf Sci, 288 (2014) 331-340.

DOI: 10.1016/j.apsusc.2013.10.029

Google Scholar

[20] G. Qi, S. Zhang, K. Khor, W. Weng, X. Zeng, C. Liu, An interfacial study of sol–gel-derived magnesium apatite coatings on Ti6Al4V substrates, Thin Solid Films, 516 (2008) 5172-5175.

DOI: 10.1016/j.tsf.2007.07.010

Google Scholar

[21] U. Batra, S. Kapoor, S. Sharma, Influence of Magnesium Ion Substitution on Structural and Thermal Behavior of Nanodimensional Hydroxyapatite, J Mater Eng Perform, 22 (2013) 1798-1806.

DOI: 10.1007/s11665-012-0462-2

Google Scholar

[22] A. Bigi, G. Falini, E. Foresti, A. Ripamonti, M. Gazzano, N. Roveri, Magnesium influence on hydroxyapatite crystallization, J Inorg Biochem, 49 (1993) 69-78.

DOI: 10.1016/0162-0134(93)80049-f

Google Scholar

[23] M. Kheradmandfard, M.H. Fathi, M. Ahangarian, E.M. Zahrani, In vitro bioactivity evaluation of magnesium-substituted fluorapatite nanopowders, Ceram Int, 38 (2012) 169-175.

DOI: 10.1016/j.ceramint.2011.05.157

Google Scholar

[24] E. Landi, A. Tampieri, M. Mattioli-Belmonte, G. Celotti, M. Sandri, A. Gigante, P. Fava, G. Biagini, Biomimetic Mg-and Mg, CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour, J Eur Ceram Soc, 26 (2006) 2593-2601.

DOI: 10.1016/j.jeurceramsoc.2005.06.040

Google Scholar