[1]
Aniket, A. Young, I. Marriott, and A. El-Ghannam, Promotion of Pro-Osteogenic Responses by a Bioactive Ceramic Coating, J Biomed Mater Res A, 100 (2012) 3314-3325.
DOI: 10.1002/jbm.a.34280
Google Scholar
[2]
K. Mediaswanti C. Wen, E.P. Ivanova, C.C. Berndt , V.T. Pham, Investigation of Bacterial Attachment on Hydroxyapatite-Coated Titanium and Tantalum, International Journal of Surface Science and Engineering, 8 (2014) 255-263.
DOI: 10.1504/ijsurfse.2014.060489
Google Scholar
[3]
S.A. Saadaldin, S.J. Dixon, D.O. Costa, A.S. Rizkalla, Synthesis of Bioactive and Machinable Miserite Glass-Ceramics for Dental Implant Applications, Dental Materials, 29 (2013) 645-655.
DOI: 10.1016/j.dental.2013.03.013
Google Scholar
[4]
A. El-Ghannam, K. Jahed, and M. Govindaswami, Resorbable Bioactive Ceramic for Treatment of Bone Infection, J Biomed Mater Res A, 94 (2010) 308-316.
DOI: 10.1002/jbm.a.32705
Google Scholar
[5]
T. Hashimoto, K. Shigenobu, M. Kanayama, M. Harada, F. Oha, Y. Ohkoshi, H. Tada, K. Yamamoto, and S. Yamane, Clinical Results of Single-Level Posterior Lumbar Interbody Fusion Using the Brantigan I/F Carbon Cage Filled with a Mixture of Local Morselized Bone and Bioactive Ceramic Granules, Spine, 27 (2002).
DOI: 10.1097/00007632-200202010-00011
Google Scholar
[6]
M. Sadat-Shojai, M. -T. Khorasani, and A. Jamshidi, Hydrothermal Processing of Hydroxyapatite Nanoparticles—a Taguchi Experimental Design Approach, Journal of Crystal Growth, 361 (2012) 73-84.
DOI: 10.1016/j.jcrysgro.2012.09.010
Google Scholar
[7]
X. Chen, A. Nouri, Y. Li, J. Lin, P. D. Hodgson, and C. Wen, Effect of Surface Roughness of Ti, Zr, and Tizr on Apatite Precipitation from Simulated Body Fluid, Biotechnol Bioeng, 101 (2008) 378-387.
DOI: 10.1002/bit.21900
Google Scholar
[8]
F. H. Liang, L. Zhou, and K. G. Wang, Apatite formation on porous titanium by alkali and heat-treatment, Amsterdam, PAYS-BAS, 165 (2003) 7.
Google Scholar
[9]
C. D. Reyes, T. A. Petrie, K. L. Burns, Z. Schwartz, and A. J. Garcia, Biomolecular Surface Coating to Enhance Orthopaedic Tissue Healing and Integration, Biomaterials, 28 (2007) 3228-3235.
DOI: 10.1016/j.biomaterials.2007.04.003
Google Scholar
[10]
X. Wang, Y. Li, P. D. Hodgson, and C. Wen, Biomimetic Modification of Porous Tinbzr Alloy Scaffold for Bone Tissue Engineering, Tissue engineering, 16 (2010) 309-316.
DOI: 10.1089/ten.tea.2009.0074
Google Scholar
[11]
X. Wang, Y. Li, J. Xiong, P. D. Hodgson, and C. Wen, Porous Tinbzr Alloy Scaffolds for Biomedical Applications, Acta Biomater, 5 (2009) 3616-3624.
DOI: 10.1016/j.actbio.2009.06.002
Google Scholar
[12]
M. H. Fathi and E. M. Zahrani, Mechanical Alloying Synthesis and Bioactivity Evaluation of Nanocrystalline Fluoridated Hydroxyapatite, Journal of Crystal Growth, 311 (2009) 1392-1403.
DOI: 10.1016/j.jcrysgro.2008.11.100
Google Scholar
[13]
Q. L. Feng, H. Wang, F. Z. Cui, and T. N. Kim, Controlled Crystal Growth of Calcium Phosphate on Titanium Surface by Naoh-Treatment, Journal of Crystal Growth, 200 (1999) 550-557.
DOI: 10.1016/s0022-0248(98)01402-x
Google Scholar
[14]
H. Kim, S. -H. Choi, S. -M. Chung, L. -H. Li, and I. -S. Lee, Enhanced Bone Forming Ability of Sla-Treated Ti Coated with a Calcium Phosphate Thin Film Formed by E-Beam Evaporation, Biomedical Materials, 5 (2010).
DOI: 10.1088/1748-6041/5/4/044106
Google Scholar
[15]
H. Daugaard, B. Elmengaard, J. E. Bechtold, T. Jensen, and K. Soballe, The Effect on Bone Growth Enhancement of Implant Coatings with Hydroxyapatite and Collagen Deposited Electrochemically and by Plasma Spray, Journal of Biomedical Materials Research Part A, 9999A (2009).
DOI: 10.1002/jbm.a.32303
Google Scholar
[16]
M. Roy, A. Bandyopadhyay, and S. Bose, Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants, Surface & Coatings Technology, 205 (2011) 2785-2792.
DOI: 10.1016/j.surfcoat.2010.10.042
Google Scholar
[17]
Y. Z. Yang, K. -H. Kim, and J. L. Ong, A Review on Calcium Phosphate Coatings Produced Using a Sputtering Process—an Alternative to Plasma Spraying, Biomaterials, 26 (2005) 327-337.
DOI: 10.1016/j.biomaterials.2004.02.029
Google Scholar
[18]
C. -Y. Wang, B. -H. Zhao, H. -J. Ai, and Y. -W. Wang, Comparison of Biological Characteristics of Mesenchymal Stem Cells Grown on Two Different Titanium Implant Surfaces, Biomedical Materials, 3 (2008).
DOI: 10.1088/1748-6041/3/1/015004
Google Scholar
[19]
S. Guizzardi, C. Galli, D. Martini, S. Belletti, A. Tinti, M. Raspanti, P. Taddei, A. Ruggeri, and R. Scandroglio, Different Titanium Surface Treatment Influences Human Mandibular Osteoblast Response, Journal of Periodontology, 75 (2004) 273-282.
DOI: 10.1902/jop.2004.75.2.273
Google Scholar
[20]
A. K. Refai, M. Textor, D. M. Brunette, and J. D. Waterfield, Effect of Titanium Surface Topography on Macrophage Activation and Secretion of Proinflammatory Cytokines and Chemokines, Journal of Biomedical Materials Research, 70A (2004) 194-205.
DOI: 10.1002/jbm.a.30075
Google Scholar
[21]
Y. J. Son Y., C.W. Ha, S. Hong, S.H. Ko, D. -Y Yang, Fabrication of Submicron-Sized Metal Patterns on a Flexible Polymer Substrate by Femtosecond Laser Sintering of Metal Nanoparticles, International Journal of Nanomanufacturing, 9 (2013).
DOI: 10.1504/ijnm.2013.057586
Google Scholar
[22]
Y. Yang, J. J. Yang, C. Y. Liang, H. S. Wang, X. N. Zhu, and N. Zhang, Surface Microstructuring of Ti Plates by Femtosecond Lasers in Liquid Ambiences: A New Approach to Improving Biocompatibility, Optics Express, 17 (2009) 21124-21133.
DOI: 10.1364/oe.17.021124
Google Scholar
[23]
H. S. Wang, C. Y. Liang, Y. Yang, and C. Y. Li Bioactivities of a Ti Surface Ablated with a Femtosecond Laser through Sbf, Biomedical Materials, 5 (2010) 054115.
DOI: 10.1088/1748-6041/5/5/054115
Google Scholar
[24]
C. Y. Liang, H. S. Wang, J. J. Yang, B. E. Li, Y. Yang, and H. P. Li, Biocompatibility of the Micro-Patterned Niti Surface Produced by Femtosecond Laser, Applied Surface Science, 261 (2012) 337-342.
DOI: 10.1016/j.apsusc.2012.08.011
Google Scholar
[25]
C. Y. Liang, H. S. Wang, J. J. Yang, Y. Yang, and X. J. Yang, Surface Modification of Cp-Ti Using Femtosecond Laser Micromachining and the Deposition of Ca/P Layer, Materials Letters, 62 (2008) 3783-3786.
DOI: 10.1016/j.matlet.2008.03.032
Google Scholar
[26]
T. Kokubo and H. Takadama, How Useful Is Sbf in Predicting in Vivo Bone Bioactivity?, Biomaterials, 27 (2006) 2907-2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[27]
S.C. Tjong and H. Chen, Nanocrystalline materials and coatings, Materials Science and Engineering: R: Reports, 45 (2004) 1-88.
Google Scholar
[28]
I. A. Onuma K., Cluster Growth Model for Hydroxyapatite, Chemistry of Materials, 10 (1998) 3346-3351.
Google Scholar