[1]
Chen F, de Aldana JRV, Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining, Laser&Photonics Reviews, 8(2014): 251-275.
DOI: 10.1002/lpor.201300025
Google Scholar
[2]
Li Y, Qu S., Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips, Current Applied Physics, 13(2013): 1292一1295.
DOI: 10.1016/j.cap.2013.03.028
Google Scholar
[3]
Chia-Hung Hung, Fuh-Yu Chang, Tien-Li Chang, et al, Micromachining NiTi thbes for use in medical devices by using a femtosecond laser, Optics and Lasers in Engineering, 66(2015): 34-40.
DOI: 10.1016/j.optlaseng.2014.08.001
Google Scholar
[4]
Y Hu, G Li, J. Cai, et al, Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating, AIP Advances, 4(2014): 127141.
DOI: 10.1063/1.4905052
Google Scholar
[5]
V.V. Iyengar, B.K. Nayak, M.C. Gupta, Optical properties of silicon light trappingstructures for photovoltaics, Solar Energy Materials& Solar Cells, 94(2010) 2251–2257.
DOI: 10.1016/j.solmat.2010.07.020
Google Scholar
[6]
Yang Y, Yang J J, Liang C Y, et al, Ultra-broadband enhanced absorption of metal Surfaced by femtosecond laser pulses, Optics Express, 16(2008)11259-11265.
DOI: 10.1364/oe.16.011259
Google Scholar
[7]
Vorobyev A Y, Guo C , Direct femtosecond laser surface nano/microstructuring and its applications, Laser&Photonics Reviews, 7(2012)385-407.
DOI: 10.1002/lpor.201200017
Google Scholar
[8]
A. Belmondo, M. Castagna, Wear-resistant coatings by laser processing, Thin Solid Films , 64(1979)249–256.
DOI: 10.1016/0040-6090(79)90517-0
Google Scholar
[9]
P. Bizi-Bandoki, S. Benayoun, S. Valette, et al., Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment, Applied Surface Science, 257 (2011)5213-5218.
DOI: 10.1016/j.apsusc.2010.12.089
Google Scholar
[10]
K.W. Schlichting, N.P. Padture, P.G. Klemens, Thermal conductivity of denseand porous yttria-stabilized zirconia, Journal of Materials Science, 36(2001)3003-3010.
DOI: 10.1023/a:1017970924312
Google Scholar
[11]
Chunyong Liang, Hongshui Wang, Jianjun Yang , Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser, Applied surface science, 261(2012)337-342.
DOI: 10.1016/j.apsusc.2012.08.011
Google Scholar
[12]
Wu B, Zhou M, Li J, et al, Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser, Applied Surface Science, 256(2009)61-66.
DOI: 10.1016/j.apsusc.2009.07.061
Google Scholar
[13]
Jing Lu, Masaru P. Rao, Noel C. MacDonald, Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features, Acta Biomaterialia , 4(2008)192-201.
DOI: 10.1016/j.actbio.2007.07.008
Google Scholar
[14]
Hong L, Rusli, Wang XC, Zheng HY, Wang H, Yu HY, Femtosecond laser fabrication of large-area periodic surface ripple structure on Si substrate, Applied Surface Science, 297(2014): 134-138.
DOI: 10.1016/j.apsusc.2014.01.100
Google Scholar
[15]
Pan A, Dias A, Gomez-Aranzadi M, Olaizola SM, Rodriguez A, Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation , Journal of Applied Physics, 115(2014): 173101.
DOI: 10.1063/1.4873459
Google Scholar
[16]
B.K. Nayak, M.C. Gupta, K.W. Kolasinski, Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation, Nanotechnology , 18 (2007)195302. Dio: 10. 1088/0957-4484/18/19/195302.
DOI: 10.1088/0957-4484/18/19/195302
Google Scholar
[17]
T. Yong Hwang, C. Guo, Polarization and angular effects of femtosecond laser-induced conical microstructures on Ni, Journal of Applied Physics, 111(2012) 083518. http: /dx. doi. org/10. 1063/1. 4704394.
DOI: 10.1063/1.4704394
Google Scholar
[18]
O. Auciello, R. Kelly, R. Iricibar, New insight into the development of pyramidal structures on bombarded copper surfaces, Radiation Effects and defects in solids, 46(1980)105–117.
DOI: 10.1080/00337578008209158
Google Scholar
[19]
Jingtao Zhua, Gang Yina, Ming Zhaoa, Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations, Applied Surface Science, 245(2005)102-108.
DOI: 10.1016/j.apsusc.2004.09.113
Google Scholar
[20]
Barada K. Nayak, Mool C. Gupta, Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation, Optics and Lasers in Engineering , 48(2010)940-949.
DOI: 10.1016/j.optlaseng.2010.04.010
Google Scholar
[21]
Kestutis, Kurselis, Roman Kiyan, Formation of corrugated and porous steel surfaces by femtosecond laser irradiation, Applied surface science, 258(2012) 8845-8852.
DOI: 10.1016/j.apsusc.2012.05.102
Google Scholar
[22]
G. Li,J. Li, C. Zhang, Y Hu, X. Li, J. Chu, W. Huang, D. Wu., Large-area one-step assembly of 3-dimensional porous metal micro/nanocages by ethano l-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity. ACS Applied Material& Interfaces, 7(2015).
DOI: 10.1021/am506291f
Google Scholar
[23]
Kemkemer R, Jungbauer S, Kaufmann D, Gruler H, Cell Orientation by a Microgrooved Substrate Can Be Predicted by Automatic Control Theory, Biophysical Journal, 90(2006): 4701-4711.
DOI: 10.1529/biophysj.105.067967
Google Scholar
[24]
Houtchens G R, Foster M D, Desai T A, Morgan E F, Wong J Y , Combined effects of microtopography and cyclic strain on vascular smooth muscle cell orientation, Journal of Biomechanics, 41(2008): 762-769.
DOI: 10.1016/j.jbiomech.2007.11.027
Google Scholar
[25]
Soboyejo W O, Nemetslti B, Allameh S, Mercer C, Marcantonio N, Ricci J , On the Interactions between MC-3T3 cells and textured Ti6A14V surfaces, Journal of Biomedical Materials Research, 62(2002): 56-72.
DOI: 10.1002/jbm.10221
Google Scholar
[26]
Craig A, Zuhlke, Troy P, Anderson, Fundamentals of layered nanoparticle covered pyramidal structures formed on nickel during femtosecond laser surface interactions, Applied Surface Science, 283(2013)648-653.
DOI: 10.1016/j.apsusc.2013.07.002
Google Scholar
[27]
Zayats AV, Smolyaninov II, Maradudin AA, Nano-optics of surface plasmon polaritons, Physics Reports, 408( 2005): 131-314.
DOI: 10.1016/j.physrep.2004.11.001
Google Scholar
[28]
Guan YC, Zhou W, Li ZL, Zheng HY , Femtosecond laser-induced iridescent effect on AZ31B magnesium alloy surface, Journal of Physics D: Applied Physics, 46(2013): 425305.
DOI: 10.1088/0022-3727/46/42/425305
Google Scholar
[29]
Chen Z, Mao S. , Femtosecond laser-induced electronic plasma at metal surface, Applied Physics Letters., 93(2008)051506-051506-3. Dio: 10. 1063/1. 2966152.
Google Scholar
[30]
Sakabe S, Hashida M, Tokita S, Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse, Physical Review B, 79(2009) 033409. dio: 10. 1103/PhysRevB. 79. 033409.
DOI: 10.1103/physrevb.91.159902
Google Scholar
[31]
Hongyu Zhang, Jianmin Han, Yulong Sun et al, MC3T3-E1 cell response to stainless steel 316L with different surface treatments, Naterials Science and Engineering: C, 56(2015): 22-29.
DOI: 10.1016/j.msec.2015.06.017
Google Scholar
[32]
K. M. Tanvir Ahmmed, Colin Grambow and Anne-Marie Kietzig, Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining, Micromachines, 5(2014): 1219-1253. Doi: 10. 3390/mi5041219.
DOI: 10.3390/mi5041219
Google Scholar
[33]
D.J. Krajnovich, J.E. Vazquez R.J. Savoy, Impurity-driven cone formation during laser sputtering of graphite, Science , 259(2012)1590–1592.
DOI: 10.1126/science.259.5101.1590
Google Scholar