Layered Ripples Covered Pyramidal Structures Formed on 316L Stainless Steel by Femtosecond Laser Processing

Article Preview

Abstract:

The formation of layered ripples covered pyramid structure is reported on 316L stainless steel surface with femtosecond laser pulses in this paper. These unique structures form though a combination of preferential ablation of flat regions around the pyramids and extension of layered ripples created during the ablation process. The cause of the formation about these structure is investigated using multi-means and the results show that these structures are derived from an inhomogeneous distribution of laser fluence, which is caused through a combination of the redeposition of nanoparticles and the local oxidation as well as the geometric factors.

You might also be interested in these eBooks

Info:

Pages:

84-92

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chen F, de Aldana JRV, Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining, Laser&Photonics Reviews, 8(2014): 251-275.

DOI: 10.1002/lpor.201300025

Google Scholar

[2] Li Y, Qu S., Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips, Current Applied Physics, 13(2013): 1292一1295.

DOI: 10.1016/j.cap.2013.03.028

Google Scholar

[3] Chia-Hung Hung, Fuh-Yu Chang, Tien-Li Chang, et al, Micromachining NiTi thbes for use in medical devices by using a femtosecond laser, Optics and Lasers in Engineering, 66(2015): 34-40.

DOI: 10.1016/j.optlaseng.2014.08.001

Google Scholar

[4] Y Hu, G Li, J. Cai, et al, Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating, AIP Advances, 4(2014): 127141.

DOI: 10.1063/1.4905052

Google Scholar

[5] V.V. Iyengar, B.K. Nayak, M.C. Gupta, Optical properties of silicon light trappingstructures for photovoltaics, Solar Energy Materials& Solar Cells, 94(2010) 2251–2257.

DOI: 10.1016/j.solmat.2010.07.020

Google Scholar

[6] Yang Y, Yang J J, Liang C Y, et al, Ultra-broadband enhanced absorption of metal Surfaced by femtosecond laser pulses, Optics Express, 16(2008)11259-11265.

DOI: 10.1364/oe.16.011259

Google Scholar

[7] Vorobyev A Y, Guo C , Direct femtosecond laser surface nano/microstructuring and its applications, Laser&Photonics Reviews, 7(2012)385-407.

DOI: 10.1002/lpor.201200017

Google Scholar

[8] A. Belmondo, M. Castagna, Wear-resistant coatings by laser processing, Thin Solid Films , 64(1979)249–256.

DOI: 10.1016/0040-6090(79)90517-0

Google Scholar

[9] P. Bizi-Bandoki, S. Benayoun, S. Valette, et al., Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment, Applied Surface Science, 257 (2011)5213-5218.

DOI: 10.1016/j.apsusc.2010.12.089

Google Scholar

[10] K.W. Schlichting, N.P. Padture, P.G. Klemens, Thermal conductivity of denseand porous yttria-stabilized zirconia, Journal of Materials Science, 36(2001)3003-3010.

DOI: 10.1023/a:1017970924312

Google Scholar

[11] Chunyong Liang, Hongshui Wang, Jianjun Yang , Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser, Applied surface science, 261(2012)337-342.

DOI: 10.1016/j.apsusc.2012.08.011

Google Scholar

[12] Wu B, Zhou M, Li J, et al, Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser, Applied Surface Science, 256(2009)61-66.

DOI: 10.1016/j.apsusc.2009.07.061

Google Scholar

[13] Jing Lu, Masaru P. Rao, Noel C. MacDonald, Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features, Acta Biomaterialia , 4(2008)192-201.

DOI: 10.1016/j.actbio.2007.07.008

Google Scholar

[14] Hong L, Rusli, Wang XC, Zheng HY, Wang H, Yu HY, Femtosecond laser fabrication of large-area periodic surface ripple structure on Si substrate, Applied Surface Science, 297(2014): 134-138.

DOI: 10.1016/j.apsusc.2014.01.100

Google Scholar

[15] Pan A, Dias A, Gomez-Aranzadi M, Olaizola SM, Rodriguez A, Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation , Journal of Applied Physics, 115(2014): 173101.

DOI: 10.1063/1.4873459

Google Scholar

[16] B.K. Nayak, M.C. Gupta, K.W. Kolasinski, Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation, Nanotechnology , 18 (2007)195302. Dio: 10. 1088/0957-4484/18/19/195302.

DOI: 10.1088/0957-4484/18/19/195302

Google Scholar

[17] T. Yong Hwang, C. Guo, Polarization and angular effects of femtosecond laser-induced conical microstructures on Ni, Journal of Applied Physics, 111(2012) 083518. http: /dx. doi. org/10. 1063/1. 4704394.

DOI: 10.1063/1.4704394

Google Scholar

[18] O. Auciello, R. Kelly, R. Iricibar, New insight into the development of pyramidal structures on bombarded copper surfaces, Radiation Effects and defects in solids, 46(1980)105–117.

DOI: 10.1080/00337578008209158

Google Scholar

[19] Jingtao Zhua, Gang Yina, Ming Zhaoa, Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations, Applied Surface Science, 245(2005)102-108.

DOI: 10.1016/j.apsusc.2004.09.113

Google Scholar

[20] Barada K. Nayak, Mool C. Gupta, Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation, Optics and Lasers in Engineering , 48(2010)940-949.

DOI: 10.1016/j.optlaseng.2010.04.010

Google Scholar

[21] Kestutis, Kurselis, Roman Kiyan, Formation of corrugated and porous steel surfaces by femtosecond laser irradiation, Applied surface science, 258(2012) 8845-8852.

DOI: 10.1016/j.apsusc.2012.05.102

Google Scholar

[22] G. Li,J. Li, C. Zhang, Y Hu, X. Li, J. Chu, W. Huang, D. Wu., Large-area one-step assembly of 3-dimensional porous metal micro/nanocages by ethano l-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity. ACS Applied Material& Interfaces, 7(2015).

DOI: 10.1021/am506291f

Google Scholar

[23] Kemkemer R, Jungbauer S, Kaufmann D, Gruler H, Cell Orientation by a Microgrooved Substrate Can Be Predicted by Automatic Control Theory, Biophysical Journal, 90(2006): 4701-4711.

DOI: 10.1529/biophysj.105.067967

Google Scholar

[24] Houtchens G R, Foster M D, Desai T A, Morgan E F, Wong J Y , Combined effects of microtopography and cyclic strain on vascular smooth muscle cell orientation, Journal of Biomechanics, 41(2008): 762-769.

DOI: 10.1016/j.jbiomech.2007.11.027

Google Scholar

[25] Soboyejo W O, Nemetslti B, Allameh S, Mercer C, Marcantonio N, Ricci J , On the Interactions between MC-3T3 cells and textured Ti6A14V surfaces, Journal of Biomedical Materials Research, 62(2002): 56-72.

DOI: 10.1002/jbm.10221

Google Scholar

[26] Craig A, Zuhlke, Troy P, Anderson, Fundamentals of layered nanoparticle covered pyramidal structures formed on nickel during femtosecond laser surface interactions, Applied Surface Science, 283(2013)648-653.

DOI: 10.1016/j.apsusc.2013.07.002

Google Scholar

[27] Zayats AV, Smolyaninov II, Maradudin AA, Nano-optics of surface plasmon polaritons, Physics Reports, 408( 2005): 131-314.

DOI: 10.1016/j.physrep.2004.11.001

Google Scholar

[28] Guan YC, Zhou W, Li ZL, Zheng HY , Femtosecond laser-induced iridescent effect on AZ31B magnesium alloy surface, Journal of Physics D: Applied Physics, 46(2013): 425305.

DOI: 10.1088/0022-3727/46/42/425305

Google Scholar

[29] Chen Z, Mao S. , Femtosecond laser-induced electronic plasma at metal surface, Applied Physics Letters., 93(2008)051506-051506-3. Dio: 10. 1063/1. 2966152.

Google Scholar

[30] Sakabe S, Hashida M, Tokita S, Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse, Physical Review B, 79(2009) 033409. dio: 10. 1103/PhysRevB. 79. 033409.

DOI: 10.1103/physrevb.91.159902

Google Scholar

[31] Hongyu Zhang, Jianmin Han, Yulong Sun et al, MC3T3-E1 cell response to stainless steel 316L with different surface treatments, Naterials Science and Engineering: C, 56(2015): 22-29.

DOI: 10.1016/j.msec.2015.06.017

Google Scholar

[32] K. M. Tanvir Ahmmed, Colin Grambow and Anne-Marie Kietzig, Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining, Micromachines, 5(2014): 1219-1253. Doi: 10. 3390/mi5041219.

DOI: 10.3390/mi5041219

Google Scholar

[33] D.J. Krajnovich, J.E. Vazquez R.J. Savoy, Impurity-driven cone formation during laser sputtering of graphite, Science , 259(2012)1590–1592.

DOI: 10.1126/science.259.5101.1590

Google Scholar