Bactericidal Coatings for Bone Implant Applications

Article Preview

Abstract:

Infections after bone implant surgeries have remained one of the leading underlying cause of revision surgery due to implant failure. Despite careful and improved surgery procedures and systemic antibiotic prophylaxis are well practised, the possibility of infection still exists. Many strategies have been studied to prevent post-implant infections, such as anti-bacterial coatings, adhesion resistant coatings, and anti-microbial alloying element. To respond on the challenge of reducing the risks of infections after bone implantations, a review that focused on the effectiveness of anti-bacterial coatings on metallic implants are briefly presented.

You might also be interested in these eBooks

Info:

Pages:

53-56

Citation:

Online since:

July 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. M. Kurtz, E. Lau, J. Schmier, K.L. Ong, K. Zhao, J. Parvizi, Infection burden for hip and knee arthroplasty in the United States, Journal of Arthroplasty, 23 (2008) 984-991.

DOI: 10.1016/j.arth.2007.10.017

Google Scholar

[2] T.N. Peel, K.L. Buising, P. F. M. Choong, 2011. Prosthetic joint infection: Challenges of diagnosis and treatment, Anz Journal of Surgery 81 (2011) 32-39.

DOI: 10.1111/j.1445-2197.2010.05541.x

Google Scholar

[3] M. Stigter, J. Bezemer, K. de Groot, P. Layrolle, Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy, Journal of Controlled Release 99 (2004) 127-137.

DOI: 10.1016/j.jconrel.2004.06.011

Google Scholar

[4] L.G. Harris, S. Tosatti, M. Wieland, M. Textor, R.G. Richards, Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted- poly(ethylene glycol) copolymers, Biomaterials 25 (2004).

DOI: 10.1016/j.biomaterials.2003.11.033

Google Scholar

[5] M. Gimeno, P. Pinczowski, M. Perez, A. Giorello, M.A. Martinez, J. Santamaria, M. Arruebo, L. Lujan, A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study, European Journal of Pharmaceutics and Biopharmaceutics 96 (2015).

DOI: 10.1016/j.ejpb.2015.08.007

Google Scholar

[6] F. Zhang, Z. Zhang, X. Zhu, E.T. Kang, K.G. Neoh, Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion, Biomaterials, 29 (2008) 4751-4759.

DOI: 10.1016/j.biomaterials.2008.08.043

Google Scholar

[7] C.F. Huang, H. J. Chiang, W. C. Lan, H. H. Chou, K.L. Ou, C.H. YU, Development of silver-containing austenite antibacterial stainless steels for biomedical applications Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms, Biofouling 27 (2011).

DOI: 10.1080/08927014.2011.582642

Google Scholar

[8] Y. F. Zheng, B.B. Zhang, B.L. Wang, Y. B. Wang, L. Li, Q. B. Yang, L. S. Cui, Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag, Acta Biomaterialia 7 (2011) 2758-2767.

DOI: 10.1016/j.actbio.2011.02.010

Google Scholar

[9] L. Zhang, J.W. Yan, Z.W. Yin, C. Tang, Y. Guo, D. Li, B. Wei, Y. Xu, Q.R. Gu, L.M. Wang, Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections, International Journal of Nanomedicine 9 (2014).

DOI: 10.2147/ijn.s63991

Google Scholar

[10] J.A. Jennings, D.P. Carpenter, K.S. Troxel, K.E. Beenken, M.S. Smeltzer, H.S. Courtney, W.O. Haggard, Novel Antibiotic-loaded Point-of-care Implant Coating Inhibits Biofilm, Clinical Orthopaedics Related Research 473 (2015) 2270-2282.

DOI: 10.1007/s11999-014-4130-8

Google Scholar

[11] L. Zhao, P.K. Chu, Y. Zhang, Z. Wu, Antibacterial coatings on titanium implants, Journal of Biomedical Materials Research - Part B Applied Biomaterials 91 (2009) 470-480.

DOI: 10.1002/jbm.b.31463

Google Scholar

[12] A. Ewald, S.K. Glückermann, R. Thull, U. Gbureck, Antimicrobial titanium/silver PVD coatings on titanium, BioMedical Engineering Online 5 (2006).

DOI: 10.1186/1475-925x-5-22

Google Scholar

[13] M. Bosetti, A. Massè, E. Tobin, M. Cannas, Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity, Biomaterials 23 (2002) 887-892.

DOI: 10.1016/s0142-9612(01)00198-3

Google Scholar

[14] C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, Journal of Nanoparticle Research 12 (2010) 1531-1551.

DOI: 10.1007/s11051-010-9900-y

Google Scholar

[15] Y. Z. Wan, S.F. Raman, He, Y. Huang, Surface modification of medical metals by ion implantation of silver and copper, Vacuum 81 (2007), 1114-1118.

DOI: 10.1016/j.vacuum.2006.12.011

Google Scholar

[16] M. Wen, Y. Li, J. Zhang, W. Guan, Y. Li, C. Wen, P. Hodgson, Synthesis and characterization of nanostructured Ag on porous titania, Applied Surface Science 257 (2011) 4836-4843.

DOI: 10.1016/j.apsusc.2010.12.102

Google Scholar

[17] E.P. Ivanova, J. Hasan, V.K. Truong, J.Y. Wang, M. Raveggi, C. Fluke, R.J. Crawford, The influence of nanoscopically thin silver films on bacterial viability and attachment, Applied Microbiology and Biotechnology (2011) 1-9.

DOI: 10.1007/s00253-011-3195-5

Google Scholar

[18] M. Marini, S. de Niederhausern, R. Iseppi, M. Bondi, C. Sabia, M. Toselli, F. Pilati, Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes, Biomacromolecules 8 (2007).

DOI: 10.1021/bm060721b

Google Scholar

[19] P.J. Kelly, H. Li, K.A. Whitehead, J. Verran, R.D. Arnell, I. Iordanova, A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings, Surface and Coatings Technology 204 (2009) 1137-1140.

DOI: 10.1016/j.surfcoat.2009.05.012

Google Scholar

[20] W. Chen, S. Oh, A.P. Ong, N. Oh, Y. Liu, H.S. Courtney, M. Appleford, J.L. Ong, Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process, Journal of Biomedical Materials Research - Part A 82 (2007).

DOI: 10.1002/jbm.a.31197

Google Scholar

[21] P. Pereira, Chitosan nanoparticles for biomedical applications, Nova Science Publisher, New York, (2010).

Google Scholar

[22] T. Wu, X. Hua, Z. He, X. Wang, X. Yu, W. Ren, The bactericidal and biocompatible characteristics of reinforced calcium phosphate cements, Biomedical Materials 7 (2012).

DOI: 10.1088/1748-6041/7/4/045003

Google Scholar

[23] J.D. Bumgardner, R. Wiser, P.D. Gerard, P. Bergin, B. Chestnutt, M. Marini, V. Ramsey, S.H. Elder, J.A. Gilbert, Chitosan: Potential use as a bioactive coating for orthopaedic and craniofacial/dental implants, Journal of Biomaterials Science, Polymer Edition 14, (2003).

DOI: 10.1163/156856203766652048

Google Scholar

[24] H.J. Martin, K.H. Schulz, J.D. Bumgardner, K.B. Walters, XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface, Langmuir, 23 (2007) 6645-6651.

DOI: 10.1021/la063284v

Google Scholar

[25] H.J. Martin, K.H. Schulz, J.D. Bumgardner, K.B. Walters, An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan, Applied Surface Science 254 (2008) 4599-4605.

DOI: 10.1016/j.apsusc.2008.01.066

Google Scholar

[26] P.H. Chua, K.G. Neoh, E.T. Kang, W. Wang, Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion, Biomaterials 29 (2008).

DOI: 10.1016/j.biomaterials.2007.12.019

Google Scholar