Surface State Studies and Biocompatibility of PMMA

Article Preview

Abstract:

In this work we accomplished a study concerning the surface state of acrylic prosthetic biomaterials both optimized and non-optimized and we studied their compatibility on test animals. Various methods are seeking to improve the quality of implants and minimally invasive devices for body analysis, the increase of biocompatibility and resistance to corrosion of materials intended to come into contact with biological tissues. Poly (methyl methacrylate) is used in a wide range of applications and offers increased resistance and color stability over time and it can be relatively easy to smooth and polish. The morphology and roughness of the surfaces in case of acrylic prosthetic biomaterials were analyzed by atomic force microscopy that provides qualitative information regarding the chemical uniformity from phase.

You might also be interested in these eBooks

Info:

Pages:

57-65

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.C. Goiato, E. Freitas, D. dos Santos, R. de Medeiros, M. Sonego, Acrylic Resin Cytotoxicity for Denture Base-Literature Review, Adv. Clin. Exp. Med. 24 (2015) 679-686.

DOI: 10.17219/acem/33009

Google Scholar

[2] J.C. Berger, C.F. Driscoll, E. Romberg, Q. Luo, G. Thompson, Surface roughness of denture base acrylic resins after processing and after polishing, J. Prosthodont. 15 (2006) 180-186.

DOI: 10.1111/j.1532-849x.2006.00098.x

Google Scholar

[3] R. Gautam, R.D. Singh, V.P. Sharma, R. Siddhartha, P Chand, R. Kumar, Biocompatibility of polymethylmethacrylate resins used in dentistry, J. Biomed. Mater. Res. B Appl. Biomater. 100 (2012) 1444-1450.

DOI: 10.1002/jbm.b.32673

Google Scholar

[4] J. John, S.A. Gangadhar, I. Shah, Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers, J. Prosthet. Dent. 86 (2001) 424-427.

DOI: 10.1067/mpr.2001.118564

Google Scholar

[5] E. LaBarre, K. Tsiang, Advanced Removable Partial Dentures, J. Prosthodont. 15 (2006) 274-276.

DOI: 10.1111/j.1532-849x.2006.00118.x

Google Scholar

[6] R. Bhola, S.M. Bhola, H. Liang, B. Mishra, Biocompatible Denture Polymers – A Review, Trends. Biomater. Artif. Organs. 23 (2010) 129-136.

Google Scholar

[7] J.H. Jorge, E.T. Giampaolo, A.L. Machado, C.E. Vergani, Cytotoxicity of denture base acrylic resins: a literature review, J. Prosthet. Dent. 90 (2003) 190-193.

DOI: 10.1016/s0022-3913(03)00349-4

Google Scholar

[8] L. Gölz, R.A. Simonis, J. Reichelt, H. Stark, M. Frentzen, J. -P. Allam, R. Probstmeier, J. Winter, D. Kraus, In vitro biocompatibility of ICON® and TEGDMA on human dental pulp stem cells, Dent. Mater. 32 (2016)1052-1064.

DOI: 10.1016/j.dental.2016.06.002

Google Scholar

[9] L. Wang, P.H. Perlatti D'Alpino, L. Gonzaga Lopes, J.C. Pereira, Mechanical properties of dental restorative materials: relative contribution of laboratory tests, J. Appl. Oral. Sci. 11 (2003) 162-167.

DOI: 10.1590/s1678-77572003000300002

Google Scholar

[10] C.A. de Souza Costa, J. Hebling, D.L.S. Scheffel, D.G.S. Soares, F.G. Basso, A. P. D. Ribeiro, Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques, Dent. Mater. 30 (2014) 769-784.

DOI: 10.1016/j.dental.2014.04.010

Google Scholar

[11] W. Jin, Q. Hao, X. Peng, P. K. Chu, Enhanced corrosion resistance and biocompatibilty of PMMA-coated ZK60 magnesium alloy, Mater. Lett. 173 (2016) 178-181.

DOI: 10.1016/j.matlet.2016.03.071

Google Scholar

[12] D. G . Gratton, S.A. Aquilino, Interim restorations, Dent. Clin. North. Am. 48 (2004) 487-497.

DOI: 10.1016/j.cden.2003.12.007

Google Scholar

[13] R. Gautam, R.D. Singh, V.P. Sharma, R. Siddhartha, P. Chand, R. Kumar, Biocompatibility of polymethylmethacrylate resins used in dentistry, J. Biomed. Mater. Res. B. 100B (2012) 1444-1450.

DOI: 10.1002/jbm.b.32673

Google Scholar

[14] K. Moharamzadeh, I. M. Brook, R. Van Noort, Biocompatibility of Resin-based Dental Materials, Materials. 2 (2009) 514-548.

DOI: 10.3390/ma2020514

Google Scholar

[15] L.J. Rickman, P. Padipatvuthikul, J.D. Satterthwaite, Contemporary denture base resins: Part 1, Dent. Update. 39 (2012) 25-28.

DOI: 10.12968/denu.2012.39.1.25

Google Scholar

[16] Y. Ucar, T. Akova, I. Aysan, Mechanical properties of polyamide versus different PMMA denture base materials, J. Prosthodont. 21 (2012) 173-176.

DOI: 10.1111/j.1532-849x.2011.00804.x

Google Scholar

[17] T.W. Chow, Y.Y. Cheng, N.H. Ladizesky, Polyethylene fibre reinforced poly(methylmethacrylate)-water sorption and dimensional changes during immersion, J. Dent. 21 (1993) 367-372.

DOI: 10.1016/0300-5712(93)90014-h

Google Scholar

[18] G. Gonçalves, M.T. Portolés, C. Ramírez-Santillán, M. Vallet-Regí, A.P. Serro, J. Grácio, P.A. Marques. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations, J. Mater. Sci. Mater. Med. 24 (2013).

DOI: 10.1007/s10856-013-5030-2

Google Scholar

[19] F. Baino, S. Perero, S. Ferraris, M. Miola, C. Balagna, E. Verné, C. Vitale-Brovarone, A. Coggiola, D. Dolcino, M. Ferraris, Biomaterials for orbital implants and ocular prostheses: overview and future prospects, Acta. Biomater. 10 (2014).

DOI: 10.1016/j.actbio.2013.12.014

Google Scholar

[20] C.A. de Souza Costa, H.M. Teixeira, A.B. Lopes do Nascimento, J. Hebling, Biocompatibility of resin-based dental materials applied as liners in deep cavities prepared in human teeth, J. Biomed. Mater. Res. B Appl. Biomater. 81(2007) 175-184.

DOI: 10.1002/jbm.b.30651

Google Scholar

[21] J.H. Jorge, E.T. Giampaolo, C.E. Vergani, A.L. Machado, A.C. Pavarina, I.Z. Carlos, Biocompatibility of denture base acrylic resins evaluated in culture of L929 cells. Effect of polymerisation cycle and post-polymerisation treatments, Gerodontology. 24 (2007).

DOI: 10.1111/j.1741-2358.2007.00146.x

Google Scholar

[22] P. Thevenot, W. Hu, L. Tang, Surface chemistry influences implant biocompatibility, Curr. Top. Med. Chem. 8 (2008) 270-280.

DOI: 10.2174/156802608783790901

Google Scholar