The Effect of Y2O3 on Properties of Hydroxyapatite Thin Films Prepared by Pulsed Laser Deposition

Article Preview

Abstract:

HA and HA+Y2O3 films were prepared by pulsed laser deposition. The microstructure and composition of films were studied by EPMA, XRD, AFM and SEM. In vitro study was performed by immersing the sample in simulate body fluid (SBF) in different days. There are more droplets on films prepared by HA+Y2O3 target than that of HA. And addition of Y2O3 can decrease the size of crystal grains. The XRD results show that the peaks corresponding to HA slightly shift to lower angel which indicates the HA lattice distorting due to addition of Y2O3. The critical load of the films increases from 10.3N to 13N when Y2O3 added. The film prepared by target HA+Y2O3 shows a higher resistance to dissolution and the precipitated grain size is small. New precipitated phases have similar functional groups with the original films.

You might also be interested in these eBooks

Info:

Pages:

22-32

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Erakovic, A. Jankovic, C. Ristoscu, L. Duta, N. Serban, A. Visan, I.N. Mihailescu, G.E. Stan, M. Socol, O. Iordache, I. Dumitrescu, C.R. Luculescu, D. Janackovic, V. Miskovic-Stankovic, Antifungal activity of Ag: hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates, Applied Surface Science, 293 (2014).

DOI: 10.1016/j.apsusc.2013.12.029

Google Scholar

[2] J.V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, A. Latini, Bioactive, nanostructured Si‐substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition, Journal of Biomedical Materials Research Part B: Applied Biomaterials, (2014).

DOI: 10.1002/jbm.b.33344

Google Scholar

[3] S. Bajpai, A. Gupta, S.K. Pradhan, T. Mandal, K. Balani, Crack Propagation Resistance of α-Al2O3 Reinforced Pulsed Laser-Deposited Hydroxyapatite Coating on 316 Stainless Steel, JOM, 66 (2014) 2095-2107.

DOI: 10.1007/s11837-014-1152-3

Google Scholar

[4] L. Torrisi, S. Trusso, G.D. Marco, P. Parisi, Pulsed laser deposition of hydroxyapatite films by KrF excimer, Physica Medica, 17 (2001) 227-231.

Google Scholar

[5] W. Mróz, M. Jedyński, A. Prokopiuk, A. Ślósarczyk, Z. Paszkiewicz, Characterization of calcium phosphate coatings doped with Mg, deposited by pulsed laser deposition technique using ArF excimer laser, Micron, 40 (2009) 140-142.

DOI: 10.1016/j.micron.2008.01.016

Google Scholar

[6] R.A. Ismail, E.T. Salim, W.K. Hamoudi, Characterization of nanostructured hydroxyapatite prepared by Nd: YAG laser deposition, Materials Science and Engineering: C, 33 (2013) 47-52.

DOI: 10.1016/j.msec.2012.08.002

Google Scholar

[7] M. Sato, M.A. Sambito, A. Aslani, N.M. Kalkhoran, E.B. Slamovich, T.J. Webster, Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium, Biomaterials, 27 (2006) 2358-2369.

DOI: 10.1016/j.biomaterials.2005.10.041

Google Scholar

[8] T. Kokubo, Surface chemistry of bioactive glass-ceramics, Journal of Non-Crystalline Solids, 120 (1990) 138-151.

DOI: 10.1016/0022-3093(90)90199-v

Google Scholar

[9] D. Wang, C. Chen, J. Ma, T. Lei, Microstructure of yttric calcium phosphate bioceramic coatings synthesized by laser cladding, Applied surface science, 253 (2007) 4016-4020.

DOI: 10.1016/j.apsusc.2006.08.036

Google Scholar

[10] Q. Bao, C. Chen, D. Wang, T. Lei, J. Liu, Pulsed laser deposition of hydroxyapatite thin films under Ar atmosphere, Materials Science and Engineering: A, 429 (2006) 25-29.

DOI: 10.1016/j.msea.2006.04.003

Google Scholar

[11] J. Arias, F. Garcıa-Sanz, M. Mayor, S. Chiussi, J. Pou, B. León, M. Pérez-Amor, Physicochemical properties of calcium phosphate coatings produced by pulsed laser deposition at different water vapour pressures, Biomaterials, 19 (1998) 883-888.

DOI: 10.1016/s0142-9612(97)00168-3

Google Scholar

[12] J. Borrajo, J. Serra, S. Liste, P. González, S. Chiussi, B. León, M. Pérez-Amor, Pulsed laser deposition of hydroxylapatite thin films on biomorphic silicon carbide ceramics, Applied surface science, 248 (2005) 355-359.

DOI: 10.1016/j.apsusc.2005.03.051

Google Scholar

[13] H. -M. Kim, T. Himeno, T. Kokubo, T. Nakamura, Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid, Biomaterials, 26 (2005) 4366-4373.

DOI: 10.1016/j.biomaterials.2004.11.022

Google Scholar

[14] Y. Gu, K. Khor, P. Cheang, Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS), Biomaterials, 25 (2004) 4127-4134.

DOI: 10.1016/j.biomaterials.2003.11.030

Google Scholar