[1]
S. Erakovic, A. Jankovic, C. Ristoscu, L. Duta, N. Serban, A. Visan, I.N. Mihailescu, G.E. Stan, M. Socol, O. Iordache, I. Dumitrescu, C.R. Luculescu, D. Janackovic, V. Miskovic-Stankovic, Antifungal activity of Ag: hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates, Applied Surface Science, 293 (2014).
DOI: 10.1016/j.apsusc.2013.12.029
Google Scholar
[2]
J.V. Rau, I. Cacciotti, S. Laureti, M. Fosca, G. Varvaro, A. Latini, Bioactive, nanostructured Si‐substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition, Journal of Biomedical Materials Research Part B: Applied Biomaterials, (2014).
DOI: 10.1002/jbm.b.33344
Google Scholar
[3]
S. Bajpai, A. Gupta, S.K. Pradhan, T. Mandal, K. Balani, Crack Propagation Resistance of α-Al2O3 Reinforced Pulsed Laser-Deposited Hydroxyapatite Coating on 316 Stainless Steel, JOM, 66 (2014) 2095-2107.
DOI: 10.1007/s11837-014-1152-3
Google Scholar
[4]
L. Torrisi, S. Trusso, G.D. Marco, P. Parisi, Pulsed laser deposition of hydroxyapatite films by KrF excimer, Physica Medica, 17 (2001) 227-231.
Google Scholar
[5]
W. Mróz, M. Jedyński, A. Prokopiuk, A. Ślósarczyk, Z. Paszkiewicz, Characterization of calcium phosphate coatings doped with Mg, deposited by pulsed laser deposition technique using ArF excimer laser, Micron, 40 (2009) 140-142.
DOI: 10.1016/j.micron.2008.01.016
Google Scholar
[6]
R.A. Ismail, E.T. Salim, W.K. Hamoudi, Characterization of nanostructured hydroxyapatite prepared by Nd: YAG laser deposition, Materials Science and Engineering: C, 33 (2013) 47-52.
DOI: 10.1016/j.msec.2012.08.002
Google Scholar
[7]
M. Sato, M.A. Sambito, A. Aslani, N.M. Kalkhoran, E.B. Slamovich, T.J. Webster, Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium, Biomaterials, 27 (2006) 2358-2369.
DOI: 10.1016/j.biomaterials.2005.10.041
Google Scholar
[8]
T. Kokubo, Surface chemistry of bioactive glass-ceramics, Journal of Non-Crystalline Solids, 120 (1990) 138-151.
DOI: 10.1016/0022-3093(90)90199-v
Google Scholar
[9]
D. Wang, C. Chen, J. Ma, T. Lei, Microstructure of yttric calcium phosphate bioceramic coatings synthesized by laser cladding, Applied surface science, 253 (2007) 4016-4020.
DOI: 10.1016/j.apsusc.2006.08.036
Google Scholar
[10]
Q. Bao, C. Chen, D. Wang, T. Lei, J. Liu, Pulsed laser deposition of hydroxyapatite thin films under Ar atmosphere, Materials Science and Engineering: A, 429 (2006) 25-29.
DOI: 10.1016/j.msea.2006.04.003
Google Scholar
[11]
J. Arias, F. Garcıa-Sanz, M. Mayor, S. Chiussi, J. Pou, B. León, M. Pérez-Amor, Physicochemical properties of calcium phosphate coatings produced by pulsed laser deposition at different water vapour pressures, Biomaterials, 19 (1998) 883-888.
DOI: 10.1016/s0142-9612(97)00168-3
Google Scholar
[12]
J. Borrajo, J. Serra, S. Liste, P. González, S. Chiussi, B. León, M. Pérez-Amor, Pulsed laser deposition of hydroxylapatite thin films on biomorphic silicon carbide ceramics, Applied surface science, 248 (2005) 355-359.
DOI: 10.1016/j.apsusc.2005.03.051
Google Scholar
[13]
H. -M. Kim, T. Himeno, T. Kokubo, T. Nakamura, Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid, Biomaterials, 26 (2005) 4366-4373.
DOI: 10.1016/j.biomaterials.2004.11.022
Google Scholar
[14]
Y. Gu, K. Khor, P. Cheang, Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS), Biomaterials, 25 (2004) 4127-4134.
DOI: 10.1016/j.biomaterials.2003.11.030
Google Scholar