[1]
D. J. Slamon, B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde, T. Fleming, W. Eiermann, J. Wolter, M. Pegram, J. Baselga, L. Norton, Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2, N. Engl. J. Med. 344 (2001).
DOI: 10.1056/nejm200103153441101
Google Scholar
[2]
G. P. Murphy, S. Beckley, M. F. Brady, T. M. Chu, J. B. Dekernion, D. Dhabuwala, J. F. Gaeta, R. P. Gibbons, S. A. Loening, C. F. Mckiel, D. G. Mcleod, J. E. Pontes, G. R. Prout, P. T. Scardino, J. Schlegel, J. D. Schmidt, W. W. Scott, N. H. Slack, M. S. Soloway, Treatment of newly diagnosed metastatic prostate cancer patients with chemotherapy agents in combination with hormones versus hormones alone, Cancer 51 (1983).
DOI: 10.1002/1097-0142(19830401)51:7<1264::aid-cncr2820510716>3.0.co;2-u
Google Scholar
[3]
A. H. Partridge, H. J. Burstein, E. P. Winer, Side Effects of Chemotherapy and Combined Chemohormonal Therapy in Women with Early-Stage Breast Cancer. J. Natl. Cancer. Monogr. 93 (2001) 135-143.
DOI: 10.1093/oxfordjournals.jncimonographs.a003451
Google Scholar
[4]
A. Yagoda, D. Petrylak, Cytotoxic chemotherapy for Advanced Hormone-Resistant Prostate Cancer, Cancer 71 (1993) 1098-1109.
DOI: 10.1002/1097-0142(19930201)71:3+<1098::aid-cncr2820711432>3.0.co;2-g
Google Scholar
[5]
S. Sengupta, D. Eavarone, I. Capila, G. Zhao, N. Watson, T. Kiziltepe, R. Sasisekharan, Temporal Targeting of Tumour Cells and Neovasculature with a Nanoscale Delivery System, Nature 436 (2005) 568-572.
DOI: 10.1038/nature03794
Google Scholar
[6]
R. Sinha, G. J. Kim, S. Nie, D. Shin, Nanotechnology in Cancer Therapeutics: Bioconjugated nanoparticles for drug delivery, Mol. Cancer Ther. 5 (2006) 1909-(1917).
DOI: 10.1158/1535-7163.mct-06-0141
Google Scholar
[7]
Y. Malam, M. Loizidou, A. M. Seifalian, Liposomes and Nanoparticles: Nanosized Vehicles for Drug Delivery in Cancer, Trends Pharmacol. Sci. 30 (2009) 592-599.
DOI: 10.1016/j.tips.2009.08.004
Google Scholar
[8]
D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol. 2 (2007) 751-760.
DOI: 10.1038/nnano.2007.387
Google Scholar
[9]
K. Cho, X. Wang, S. Nie, Z. Chen, D. M. Shin, Therapeutic Nanoparticles for Drug Delivery in Cancer, Clin. Cancer Res. 14 (2008) 1310-1316.
DOI: 10.1158/1078-0432.ccr-07-1441
Google Scholar
[10]
R. Bhatt, P. de Vries, J. Tulinsky, G. Bellamy, B. Baker, J. Singer, P.J. Klein, Synthesis and in Vivo Antitumor Activity of Poly(l-glutamic acid) Conjugates of 20(S)-Camptothecin, J. Med. Chem. 46 (2003) 190-193.
DOI: 10.1021/jm020022r
Google Scholar
[11]
U. Kedar, P. Phutane, S. Shdihaye, V. Kadam, Advances in Polymeric Micelles for Drug Delivery and Tumor Targeting, Nanomedicine 6 (2010) 714-729.
DOI: 10.1016/j.nano.2010.05.005
Google Scholar
[12]
Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery, ACS Nano 1 (2007) 50-56.
DOI: 10.1021/nn700040t
Google Scholar
[13]
C. Lee, J. MacKay, J. Fréchet, F. Szoka, Designing Dendrimers for Biological Applications, Nat. Biotechnol. 23 (2005) 1517-1526.
DOI: 10.1038/nbt1171
Google Scholar
[14]
A. Sharma, U. Sharma, Liposomes in Drug Delivery: Progress and Limitations, Int. J. Pharm. 154 (1997) 123-140.
Google Scholar
[15]
Q. Wang, X. Zhang, J. Zhen, D. Liu, Self-Assembled Peptide Nanotubes as Potential Nanocarriers for Drug Delivery, RSC Adv. 4 (2014) 25461-25469.
DOI: 10.1039/c4ra03304c
Google Scholar
[16]
H. Liu, J. Chen, Q. Shen, W. Fu, W. Wu, Molecular Insights on the Cyclic Peptide Nanotube-Mediated Transportation of Antitumor Drug 5-Fluorouracil, Mol. Pharm. 7 (2010) 1985-(1994).
DOI: 10.1021/mp100274f
Google Scholar
[17]
J. A. MacKay, M. Chen, J. R. McDaniel, W. Liu, A. J. Simnick, A. Chilkoti, Self-assembling Chimeric Polypeptide–Doxorubicin Conjugate Nanoparticles that abolish Tumours after a Single injection Nat. Mater. 8 (2009) 993-999.
DOI: 10.1038/nmat2569
Google Scholar
[18]
R. Ischakov, L. Adler-Abramovich, L. Buzhansky, T. Shekhter, E. Gazit, Peptide Based Hydrogel Nanoparticles as Effective Drug Delivery Agents, Bioorg. Med. Chem. 21 (2013) 3517-3522.
DOI: 10.1016/j.bmc.2013.03.012
Google Scholar
[19]
R. Huang, Q. Wei, L. Feng, R. Su, Z. He, Self-Assembling Peptide-Polysaccharide Hybrid Hydrogel as a Potential Carrier for Drug Delivery, Soft Matter, 7 (2011) 6222-6230.
DOI: 10.1039/c1sm05375b
Google Scholar
[20]
R. J. Lee, P. S. Low, Folate Mediated Cell Targeting of Liposome-Entrapped Doxorubicin in vitro BBA-Biomembranes 1233 (1995) 134-144.
DOI: 10.1016/0005-2736(94)00235-h
Google Scholar
[21]
Z. Liu, J. T. Robinson, X. Sun, H. Dai, PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs, J. Am. Chem. Soc. 130 (2008) 10876-10877.
DOI: 10.1021/ja803688x
Google Scholar
[22]
R. J. Lee, P. S. Low, Delivery of Liposomes into cultured KB cells via Folate Receptor-mediated Endocytosis. J. Biol. Chem. 269 (1994) 3198-3204.
DOI: 10.1016/s0021-9258(17)41848-5
Google Scholar
[23]
P. Singh, U. Gupta, A. Asthana, N. K. Jain, Folate and Folate−PEG−PAMAM Dendrimers: Synthesis, Characterization, and Targeted Anticancer Drug Delivery Potential in Tumor Bearing Mice, Bioconjugate Chem. 19 (2008) 2239-2252.
DOI: 10.1021/bc800125u
Google Scholar
[24]
A. Gabizon, A. T. Horowitz, D. Goren, D. Tzemach, F. Mandelbaum-Shavit, M. M. Qazen, S. Zalipsky, Targeting Folate Receptor with Folate Linked to Extremities of Poly(ethylene glycol)-Grafted Liposomes: In Vitro Studies, Bioconjugate Chem. 10 (1999).
DOI: 10.1021/bc9801124
Google Scholar
[25]
E. Song, Z. L. Zhang, Q. Y. Luo, W. Lu, Y. B. Shi, D. Pang, W. Tumor cell targeting using folate-conjugated fluorescent quantum dots and receptor-mediated endocytosis, Clin. Chem. 55 (2009) 955-963.
DOI: 10.1373/clinchem.2008.113423
Google Scholar
[26]
D. J. O'Shannessy, E. B. Somers, J. Maltzman, R. Smale, Y. Fu, Folate receptor alpha (FRA) expression in breast cancer: identification of a new molecular subtype and association with triple negative disease, Springer Plus 1 (2012) 22.
DOI: 10.1186/2193-1801-1-22
Google Scholar
[27]
F. Wang, Y. Chen, D. Zhang, Q. Zhang, D. Zheng, L. Hao, Y. Liu, C. Duan, L. Jia, G. Liu, Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid micelles, Int. J. Nanomed. 7 (2012).
DOI: 10.2147/ijn.s27823
Google Scholar
[28]
A. K. Khan, R. Rashid, G. Murtaza, Gold Nanoparticles: Synthesis and Applications in Drug Delivery, A. Zahra, J. Trop. Pharm. Res. 13 (2014)1169-1177.
DOI: 10.4314/tjpr.v13i7.23
Google Scholar
[29]
P. Ghosh, G. Han, M. De, C. Kim, V. Rotello, Gold Nanoparticles in Delivery Applications, Adv. Drug Deliver. Rev. 60 (2008) 1307-1315.
DOI: 10.1016/j.addr.2008.03.016
Google Scholar
[30]
G. Han, P. Ghosh, V. M. Rotello. Functionalized Gold nanoparticles for Drug Delivery Nanomedicine 2 (2007) 113-123.
DOI: 10.2217/17435889.2.1.113
Google Scholar
[31]
J. Chen, M, Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, J. Xia, Gold Nanocages: A Novel Class of Multifunctional Nanomaterials for Theranostic Applications, Adv. Funct. Mater. 20 (2010) 3684-3694.
DOI: 10.1002/adfm.201001329
Google Scholar
[32]
R. A. Sperling, T. Pellegrino, J. K. Li, W. H. Chang, W. J. Parak, Electrophoretic Separation of Nanoparticles with a Discrete Number of Functional Groups, Adv. Funct. Mater. 16 (2006) 943-948.
DOI: 10.1002/adfm.200500589
Google Scholar
[33]
X. Yang, Y. Chen, R. Yuan, G. Chen, E. Blanco, J. Gao, X. Shuai, Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells, Polymer, 49 (2008) 3477-3485.
DOI: 10.1016/j.polymer.2008.06.005
Google Scholar
[34]
O. Abe, Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group, The Lancet 351 (1998) 1451-1467.
DOI: 10.1016/s0140-6736(97)11423-4
Google Scholar
[35]
A. Renodon, J. Boucher, M. Sari, M. Delaforge, J. Ouazzani, D. Mansuy, Strong Inhibition of Neuronal Nitric Oxide Synthase by the Calmodulin Antagonist and Anti-Estrogen Drug Tamoxifen Biochem. Pharmacol. 54 (1997) 1109-1114.
DOI: 10.1016/s0006-2952(97)00316-x
Google Scholar
[36]
Y. L. Ottaviano, J. Issa, F. F. Parl, H. S. Smith, S. B. Baylin, N. E. Davidson, Methylation of the Estrogen Receptor Gene CpG Island Marks Loss of Estrogen Receptor Expression in Human Breast Cancer Cells, Cancer Res. 54 (1994) 2552-2555.
Google Scholar
[37]
A. J. Stewart, M. D Johnson, F. E. B. May, B. R. Westley, Role of insulin-like growth factors and the type I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells, J. Biol. Chem. 265 (1990).
DOI: 10.1016/s0021-9258(17)45342-7
Google Scholar
[38]
S. G. Nayfield, J. E. Karp, L. G. Ford, F. A. Dorr, B. S. Kramer, Potential Role of Tamoxifen in Prevention of Breast Cancer, J. Natl. Cancer I. 82 (1991) 1450-1459.
DOI: 10.1093/jnci/83.20.1450
Google Scholar
[39]
J. R. Garreau, T. DeLaMelena, D. Walts, Karamlou, K. Johnson, Side effects of aromatase inhibitors versus tamoxifen: the patients' perspective, Am. J. Surg. 192 (2006) 496-498.
DOI: 10.1016/j.amjsurg.2006.06.018
Google Scholar
[40]
J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Magnetic nanoparticles and targeted èdrug delivering, Pharmacol. Res. 62 (2010) 144-149.
DOI: 10.1016/j.phrs.2010.01.014
Google Scholar
[41]
R. Jayakumar, M. Murugesan, C. Asokan, M. A. Sciboh, Self-Assembly of a Peptide Boc−(Ile)5−OMe in Chloroform and N, N-Dimethylformamide, Langmuir 16 (2000) 1489-1496.
DOI: 10.1021/la990004l
Google Scholar
[42]
J. S. Choi, D. K. Joo, C. H. Kim, K. Kin, J. S. Park, Synthesis of a Barbell-like Triblock Copolymer, Poly(l-lysine) Dendrimer-block-Poly (ethylene glycol)-block-Poly(l-lysine) Dendrimer, and Its Self-Assembly with Plasmid DNA, J. Am. Chem. Soc. 122 (2000).
DOI: 10.1021/ja9931473
Google Scholar
[43]
P. M. Tiwari, K. Vig, V. A. Dennis, S. R. Singh, Functionalized Gold Nanoparticles and their Biomedical Applications, Nanomaterials 1 (2011) 31-63.
DOI: 10.3390/nano1010031
Google Scholar
[44]
J. Turkevich, P. C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, J. Discuss. Faraday Soc. 11 (1951) 55-75.
DOI: 10.1039/df9511100055
Google Scholar
[45]
W. Haiss, N. T. K. Thanh, J. Aveyard, D. G. Fernig, Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra, Anal. Chem. 79 (2007) 4215-4221.
DOI: 10.1021/ac0702084
Google Scholar
[46]
M. Wirde, U. Gelius, Self-Assembled Monolayers of Cystamine and Cysteamine on Gold Studied by XPS and Voltammetry, Langmuir 15 (1999) 6370-6378.
DOI: 10.1021/la9903245
Google Scholar
[47]
S. Zhang, Fabrication of Novel Biomaterials through Molecular Self-Assembly, Nat. Biotechnol. 21 (2003) 1171-1178.
DOI: 10.1038/nbt874
Google Scholar
[48]
M. Zhang, X. H. Li, Y. D. Gong, N. M. Zhao, X. F. Zhang, Properties and Biocompatibility of chitosan films modified by blending with PEG, Biomaterials 23 (2002) 2641-2648.
DOI: 10.1016/s0142-9612(01)00403-3
Google Scholar
[49]
D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature 437 (2005) 640-647.
DOI: 10.1038/nature04162
Google Scholar
[50]
R. R. Sawant, V. P. Torchillin, Polymeric micelles: polyethylene glycol-phosphatidylethanolamine (PEG-PE)-based micelles as an example, Methods Mol. Biol. 624 (2010) 131-149.
DOI: 10.1007/978-1-60761-609-2_9
Google Scholar
[51]
F. Ahmed, D. E. Discher, Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles, J. Control. Release 96 (2004) 37-53.
DOI: 10.1016/j.jconrel.2003.12.021
Google Scholar
[52]
D. J. Owen, Linking endocytic cargo to clathrin: structural and functional insights into coated vesicle formation. Biochem. Soc. Trans. 32 (2004) 1-14.
DOI: 10.1042/bst0320001
Google Scholar
[53]
G. Motkar, M. Lonare, O. Patil, S. Mohanty, Self-assembly of folic acid in aqueous media, AIChE J. 59 (2013) 1360-1368.
DOI: 10.1002/aic.14066
Google Scholar
[54]
Y. Kamikawa, M. Nishii, T. Kato, Self-Assembly of Folic Acid Derivatives: Induction of Supramolecular Chirality by Hierarchical Chiral Structures, Chem. Eur. J. 10 (2004) 5942-5951.
DOI: 10.1002/chem.200400424
Google Scholar
[55]
R. Bongartz, D. Ag, M. Seleci, J. G. Walter, E. E. Yalcinkaya, D. O. Demirkol, F. Stahl, S. Timur, T. Scheper, Folic acid-modified clay: targeted surface design for cell culture applications, J. Mater. Chem. B. 1 (2012) 522-528.
DOI: 10.1039/c2tb00328g
Google Scholar
[56]
J. Y. Lee, P. C. Painter, M. M. Coleman, Hydrogen bonding in polymer blends. 3. Blends involving polymers containing methacrylic acid and ether groups, Macromolecules, 21 (1988) 346-354.
DOI: 10.1021/ma00180a011
Google Scholar
[57]
P. L. Privalov, S. J. Gill, Stability of protein structure and hydrophobic interaction, Adv. Protein Chem. 39 (1988) 191-234.
DOI: 10.1016/s0065-3233(08)60377-0
Google Scholar
[58]
M. Sturtevant, Heat capacity and entropy changes in processes involving proteins, Proc. Natl. Acad. Sci. U.S.A. 74 (1977) 2236-2240.
DOI: 10.1073/pnas.74.6.2236
Google Scholar
[59]
C. Garrido, N. Dahl, C. A. Simpson, J. Bresee, D. Feldhein, D. M. Margolis, XIX International Aids Conference, (2012) July 22.
Google Scholar
[60]
Y. Xu, Q. Cao, F. Svec, J. M. Fréchet, Porous Polymer Monolithic Column with Surface-Bound Gold Nanoparticles for the Capture and Separation of Cysteine-Containing Peptides, Anal. Chem. 82 (2010) 3352-3358.
DOI: 10.1021/ac1002646
Google Scholar
[61]
G. M. Khan, Controlled release oral dosage forms: Some recent advances in matrix type drug delivery systems, J. Med. Sci. 1 (2001) 350-354.
DOI: 10.3923/jms.2001.350.354
Google Scholar
[62]
P. Li, Y. Wang, F. Zeng, L. Chen, Z. Peng, L. X. Kong, Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells, Carbohydrate. Res. 346 (2011) 801-806.
DOI: 10.1016/j.carres.2011.01.027
Google Scholar
[63]
K. G. Thomas, P. V. Kamat, Making Gold Nanoparticles Glow: Enhanced Emission from a Surface-Bound Fluoroprobe, J. Am. Chem. Soc. 122 (2000) 2655-2656.
DOI: 10.1021/ja9941835
Google Scholar
[64]
J. L. Zhang, R. S. Srivastava, R. D. K. Misra, Core−Shell Magnetite Nanoparticles Surface Encapsulated with Smart Stimuli-Responsive Polymer: Synthesis, Characterization, and LCST of Viable Drug-Targeting Delivery System, Langmuir, 23 (2007).
DOI: 10.1021/la0636199
Google Scholar
[65]
F. Li, H. Zhang, B. Dever, X. F. Li, X. C. Le, Thermal Stability of DNA Functionalized Gold Nanoparticles, Bioconj. Chem. 24 (2013) 1790-1797.
DOI: 10.1021/bc300687z
Google Scholar
[66]
G. Von White, Y. Chen, J. Roder-Hanna, G. D. Bothun, C. L. Kitchens, Structural and Thermal Analysis of Lipid Vesicles Encapsulating Hydrophobic Gold Nanoparticles, ACS Nano, 6 (2012) 4678-4685.
DOI: 10.1021/nn2042016
Google Scholar
[67]
S. Ashwini, S. Durraivel, J. Balasubramanian, B. Mounika, B. N. Kumar, S Sivaneswari, N. Preethi, V. A. Kumar, S. V. Murthy, Formulation of sustained release drug delivery of carbamazepine to modulate release of drug to achieve specific clinical purpose, Der Pharmacia Sinica 5 (2014).
Google Scholar
[68]
Y. Yeo, K. Park, Control of encapsulation efficiency and initial burst in polymeric microparticle systems, Arch. Pharm. Res. 27 (2004) 1-12.
DOI: 10.1007/bf02980037
Google Scholar
[69]
C. Barbé, J. Bartlett, L. Kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja, Silica Particles: A Novel Drug-Delivery System, Adv. Mater. 16 (2004) 1959-(1966).
DOI: 10.1002/adma.200400771
Google Scholar
[70]
G. Tiwari, R. Tiwari, B. Sriwastava, L. Bhati, S. Pandey, P. Pandey, S. Bannerjee, Drug delivery systems: An updated review, Int. J. Pharm. Investig. 2 (2012) 2-11.
DOI: 10.4103/2230-973x.96920
Google Scholar
[71]
S. A. Curley, F. Izzo, L. A. Ellis, J. N. Vauthey, P. Vallone, Radiofrequency ablation of hepatocellular cancer in 110 patients with cirrhosis, Ann. Surg. 232 (2000) 381-391.
DOI: 10.1097/00000658-200009000-00010
Google Scholar
[72]
K. Muenstedt, S. El-Safadi, Nutritive Supplements - Help or Harm for Breast Cancer Patients? Breast Care 5 (2010) 383-387.
DOI: 10.1159/000322651
Google Scholar
[73]
L. Ghibelli, C. Nosseri, S. Coppola, V. Maresca, L. Dini, The Increase in H2O2-Induced Apoptosis by ADP-Ribosylation Inhibitors Is Related to Cell Blebbing, Exp. Cell Res. 221 (1995) 470-477.
DOI: 10.1006/excr.1995.1398
Google Scholar
[74]
S. D. Weitman, R. H. Lark, L. R. Coney, D. Fort, V. Frasca, V. Zurawski Jr., B. Kamen, Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues, Cancer Res. 52 (1992) 3396-3401.
Google Scholar
[75]
D. Hu, Z. Sheng, S. Fang, Y. Wang, D. Gao, P. Zhang, P. Gong, Y. Ma, L. Cai, Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis, Theranostics, 4 (2014) 142-153.
DOI: 10.7150/thno.7266
Google Scholar
[76]
R. Cailleau, R. Young, M. Olive, W. Reeves, Breast tumor cell lines from pleural effusions, J. Natl. Cancer Inst. 1974, 53, 661-674.
DOI: 10.1093/jnci/53.3.661
Google Scholar
[77]
A. Duarte, J. C. G. Esteves da Silva, Reduced Fluoresceinamine as a Fluorescent Sensor for Nitric Oxide, Sensors, 10 (2010) 166-1669.
DOI: 10.3390/s100301661
Google Scholar
[78]
Y. Liu, M. Shipton, J. Ryan, E. Kaufman, S. Franzen, D. Feldheim, D. L. Synthesis, Stability, and Cellular Internalization of Gold Nanoparticles Containing Mixed Peptide−Poly(ethylene glycol) Monolayers Anal. Chem. 79 (2007) 2221-2229.
DOI: 10.1021/ac061578f
Google Scholar
[79]
G. Wegner, H. Lee, R. Corn, Anal. Chem. Characterization and Optimization of Peptide Arrays for the Study of Epitope−Antibody Interactions Using Surface Plasmon Resonance Imaging, 74 (2002) 5161-5168.
DOI: 10.1021/ac025922u
Google Scholar
[80]
C. Bich, M. Scott, A. Panagiotidis, R. Wenzel, A. Nazabal, R. Zenobi, Characterization of antibody-antigen interactions: comparison between surface plasmon resonance measurements and high-mass matrix-assisted laser desorption/ionization mass spectrometry, Anal. Biochem. 375 (2008).
DOI: 10.1016/j.ab.2007.11.016
Google Scholar
[81]
F. Yao, R. Zhang, H. Tian, X. Li, Studies on the Interactions of Copper and Zinc Ions with β-Amyloid Peptides by a Surface Plasmon Resonance Biosensor, Int. J. Mol. Sci. 13 (2012) 11832-11843.
DOI: 10.3390/ijms130911832
Google Scholar
[82]
W. Wang, L. Yin, L. Gonzalez-Malerva, S. Wang, X. Yu, S. Eaton, S. Zhang, H. Chen, J. LaBaer, N. Tao, In situ drug-receptor binding kinetics in single cells: a quantitative label-free study of anti-tumor drug resistance, Scientific Reports 4 (2014).
DOI: 10.1038/srep06609
Google Scholar
[83]
R. Shervedani, A. Farahbakhsh, M. Bagherzadeh, Functionalization of gold cysteamine self-assembled monolayer with ethylenediaminetetraacetic acid as a novel nanosensor, Anal. Chim. Acta, 587 (2007) 254-262.
DOI: 10.1016/j.aca.2007.01.053
Google Scholar
[84]
J. Madhusudhannan, S. Sandhya, S. Malathi, Folate Mediated Drug Delivery using Nanoparticle, Asian J. Pharm. Tech. 3 (2013) 155-160.
Google Scholar
[85]
A. Llevot, D. Astruc, Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer, Chem. Soc. Rev. 41 (2012) 242-257.
DOI: 10.1039/c1cs15080d
Google Scholar
[86]
J. Pan, S-S Feng, Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers, Biomaterials 30 (2009) 1176-1183.
DOI: 10.1016/j.biomaterials.2008.10.039
Google Scholar
[87]
E. K. Shanle, W. Xu, Selectively targeting Estrogen Receptors for Cancer Treatment, Adv. Drug Deliver. Rev. 62 (2010) 1265-1276.
DOI: 10.1016/j.addr.2010.08.001
Google Scholar
[88]
P. Katsamba, I. Naratilova, M. Calderon-Cacia, L. Fan, K. Thonton, M. Zhu, T. Bos, C. Forte, D. Friend, I. Laird-Offringa, G. Tavares, J. Whatley, E. Shi, A. Widom, K. Lindquist, S. Klakamp, A. Drake, D. Bohmann, M. Roell, L. Rose, J. Dorocke, B. Roth, B. Luginbuhl, D. Myszka, Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users, Anal. Biochem. 352 (2006).
DOI: 10.1016/j.ab.2006.01.034
Google Scholar
[89]
R. Rich, D. Myszka, Survey of the year 2007 commercial optical biosensor literature, J. Mol. Recognition, 21 (2008) 355-400.
DOI: 10.1002/jmr.928
Google Scholar