[1]
Boykov, Y., Jolly, M.: Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images. In: 8th International Conference on Computer Vision, Vancouer, pp.105-112. Vancouer (2001).
DOI: 10.1109/iccv.2001.937505
Google Scholar
[2]
Zhang, L., Kong, H., Chin C.T., Wang, T., Chen, S.: Cytoplasm segmentation on cervical cell images using graph cut-based approach. Biomed Mater Eng. 24(1), 1125-1131 (2014).
DOI: 10.3233/bme-130912
Google Scholar
[3]
Lesko, M., Kato, Z., Nagy A., Gombos, I., Torok, Z., Vgh Jr L., Vgh, L.: Live Cell Segmentation in Fluorescence Microscopy via Graph Cut. In: International Conference on Pattern Recognition pp.1485-1488. (2010).
DOI: 10.1109/icpr.2010.367
Google Scholar
[4]
Veskler, O.: Star shape prior for graph-cut image segmentation. In: 08 Proceedings of the 10th European Conference on Computer Vision pp.454-467. Berlin(2008).
DOI: 10.1007/978-3-540-88690-7_34
Google Scholar
[5]
Freedman,D., Zhang, T.: Interactive Graph Cut Based Segmentation with shape priors. In: IEEE Conference on Computer Vision and Pattern Recognition. pp.755-762. (2005).
DOI: 10.1109/cvpr.2005.191
Google Scholar
[6]
Candemir S., Akgul Y. S,.: Adaptive Regularization Parameter for Graph Cut Segmentation. Lecture notes in computer science. 6111, 117-126 (2010).
DOI: 10.1007/978-3-642-13772-3_13
Google Scholar
[7]
Peng, B., Veksler, O.: Parameter Selection for Graph Cut Based Image Segmentation. In: British Machine Vision Conference. (2008).
DOI: 10.5244/c.22.16
Google Scholar
[8]
Lin, X., Adiga, U., Olson, K., Guzowski, JF., Barnes, CA., Roysam, B.: A hybrid 3d watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry Part A. 56(1), 23-26(2003).
DOI: 10.1002/cyto.a.10079
Google Scholar
[9]
Nielsen, B., Albregtsen, F., Danielsen, H.: Automatic segmentation of cell nuclei in feulgen-stained histological sections of prostate cancer and quantitative evaluation of segmentation results. Cytometry. 81, 588{601 (2012).
DOI: 10.1002/cyto.a.22068
Google Scholar
[10]
Danek, O., Matula, P., Ortiz-de-Solorzano, C., Munoz-Barrutia A., Maska, M., Kozubek, M.,: Segmentation of Touching Cell Nuclei Using Two Stage Graph Cut Model. Springer-Verlag. 411-419 (2009).
DOI: 10.1007/978-3-642-02230-2_42
Google Scholar
[11]
Song, Y., Cai, W., Feng, DD., Chen, M.: Cell Nucei Segmentation in Fluorescence Microscopy Images Using Inter- and IntraRegion Discriminative Information. In: IEEE International Conference of EMBS. Japan. (2009).
Google Scholar
[12]
Coelho, LP, Shari, A., Murphy, RF.: Nuclear segmentationtation in microscope cell images: a hand-segmented dataset and comparison of algorithms. In: IEEE International Symposium on Biomedical Imaging. pp.518-521. Boston(2009).
DOI: 10.1109/isbi.2009.5193098
Google Scholar
[13]
Chen, C., Wang, W., Ozolek, JA., Rohde, GK.: A exible and robust approach for segmenting cell nuclei from 2D microscopy images using supervised learning and template matching,. Cytometry A. 83(5) pp.495-507 (2013).
DOI: 10.1002/cyto.a.22280
Google Scholar
[14]
Alilou, A., Kovalev, V., Taimouri, V.: Segmentation of cell nuclei in heterogeneous microscopy images: A reshapable templates approach. Computerized Medical Images and Graphics. 37(7) pp.488-499 (2013).
DOI: 10.1016/j.compmedimag.2013.07.004
Google Scholar
[15]
Boykov, Y., Jolly, M., Murphy, RF.: Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images,. In: International Conference on Computer Vision. Vancouer(2001).
DOI: 10.1109/iccv.2001.937505
Google Scholar
[16]
Boykov, Y., Kolmogorov, K.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEE Transactions on PAMI. pp.1124-1137 (2004).
DOI: 10.1109/tpami.2004.60
Google Scholar
[17]
Hartigan, J.A., Hartigan, M.A.: A k-means clustering algorithm. Appl Stat. 28 p.100{108 (1979).
Google Scholar
[18]
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transaction on systems, man, and cybernetics. 9(1) pp.62-66 (1979).
DOI: 10.1109/tsmc.1979.4310076
Google Scholar
[19]
Vebjorn L., Katherine L.S., Anne E.C.: Annotated high-throughput microscopy image sets for validation. Nature Methods. 9(637) (2012).
Google Scholar
[20]
Oyebode K., Tapamo J.: Adaptive Parameter Selection for Graph Cut-Based Seg-mentation on Cell Images. Image Analysis and Stereology. 30(1) (2016).
DOI: 10.5566/ias.1333
Google Scholar