Level of Nitrogen Oxide and Indicators of Oxidative-Antioxidative Status in the Gingival Tissues, Blood Plasma in Experimental Chronic Gastritis and Duodenitis and Drug Correction

Article Preview

Abstract:

model of chronic gastritis and duodenitis was conducted in 48 immature Wistar rats both gender by intragastric injection of medical bile. Control group consisted of 10 animals. After approximation model of the gastritis and duodenitis rats were divided into five subgroups: the 1st subgroup (before treatment, 9 rats), subgroup 2 (10 animals) received the antioxidant, subgroup 3 (11 animals) – received NO donator, subgroup 4 (10 animals) - received an antioxidant and NO donator, subgroup 5 (8 animals) – received the antioxidant, NO donator and calcium carbonate. In rats with gastritis and duodenitis was observed redistribution of stable metabolites of nitric oxide: decreasing level in the gingival homogenates and increasing in the blood plasma. Level of malondialdehyde and aldehyddehydrogenase in the gingival tissue increased, and in the blood plasma decreased, on a background of catalase activation; content of ketone phenilhydrazone remained in the level of control group. Decreasing markers of oxidation lipids and proteins in the blood plasma, on a background of increasing levels of catalase and nitric oxide metabolites (in 14 times), indicates about a key role of NO in the antioxidant protection of organism in a case of disease.Application of antioxidant could not impact on the indicators of oxidation lipids and proteins. It had been shown decreasing content of the nitric oxide metabolites in the gingival tissues and blood plasma. Drug correction with donator of nitric oxide have to increase markers of oxidation lipids and proteins in the gingival tissues, on a background of high catalase activity and low levels of nitric oxide metabolites. In the blood plasma content of nitric oxide metabolites was higher, which indicated about an active inflammatory process in the stomach and duodenum mucosa. Indicators of the protein molecules fragmentation and malondialdehyde were not differ from those before treatment. Level of catalase was in two times higher, than in the control group, but level of superoxide dismutase was decreased. Complex of antioxidant and donator of nitric oxide helped to stabilise the indicators of oxidation lipids and proteins, although level of nitric oxide metabolites in the gingiva was significantly decreased. Application complex from the antioxidant, donator of nitric oxide and calcium carbonate at the treatment of chronic gastritis and duodenitis restored an oxidative-antioxidative status in the blood plasma and gingival tissues, increasing the production of nitric oxide to a level in the control group.

You might also be interested in these eBooks

Info:

Pages:

83-90

Citation:

Online since:

March 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Cuzzocrea, B. Zingarelli, P. Hake, A.L. Salzman, C. Szabó, Antiinflammatory effects of mercaptoethylguanidine, a combined inhibitor of nitric oxide synthase and peroxynitrite scavenger, in carrageenan-induced models of inflammation, Free Radical Biology and Medicine 24 (1998).

DOI: 10.1016/s0891-5849(97)00280-3

Google Scholar

[2] R. Di Paola, S. Marzocco, E. Mazzon, F. Dattola, F. Rotondo, D. Britti, M. De Majo, T. Genovese, S. Cuzzocrea, Effect of aminoguanidine in ligature-induced periodontitis in rats, Journal of Dental Research (83) 2004 343–348.

DOI: 10.1177/154405910408300414

Google Scholar

[3] G.J. Southan, C. Szabó, Selective pharmacological inhibition of distinct nitric oxide synthase isoforms, Biochemical Pharmacology 51(1996) 383–394.

DOI: 10.1016/0006-2952(95)02099-3

Google Scholar

[4] Z. Lohinai, P. Benedek, E. Fehér, A. Györfi, L. Rosivall, A. Fazekas, A.L. Salzman, C. Szabó, Protective effects of mercaptoethylguanidine, a selective inhibitor of inducible nitric oxide synthase, in ligature-induced periodontitis in the rat, British Journal of Pharmacology 123(1998).

DOI: 10.1038/sj.bjp.0701604

Google Scholar

[5] R.P. Allaker, L.S. Silva Mendez, J.M. Hardie, N. Benjamin, Antimicrobial effect of acidified nitrite on periodontal bacteria, Oral Microbiology and Immunology 16 (2001) 253-256.

DOI: 10.1034/j.1399-302x.2001.160410.x

Google Scholar

[6] S. Carossa, P. Pera, P. Doglio, S. Lombardo, P. Colagrande, L. Brussino, Oral nitric oxide during plaque deposition, European Journalof Clinical Investigation  31(2001) 876-879.

DOI: 10.1046/j.1365-2362.2001.00902.x

Google Scholar

[7] A.W. Carpenter, M.H. Schoenfisch, Nitric oxide release: Part II. Therapeutic applications, Chemical Society Reviews 41(2012) 3742-3752.

DOI: 10.1039/c2cs15273h

Google Scholar

[8] P.N. Coneski, M.H. Schoenfisch, Nitric oxide release: Part III. Measurement and reporting, Chemical Society Reviews 41 (2012) 3753-3758.

DOI: 10.1039/c2cs15271a

Google Scholar

[9] L.A. Chambrone, L. Chambrone, Tooth loss in well-maintained patients with chronic periodontitis during long-term supportive therapy in Brazil, Journal of Clinical Periodontology 33 (2006) 759–764.

DOI: 10.1111/j.1600-051x.2006.00972.x

Google Scholar

[10] M. A. Botelho, V.S. Rao, C.B. Carvalho, J.G. Bezerra-Filho, S.G. Fonseca, M.L. Vale, D. Montenegro, F. Cunha, R.A. Ribeiro, G.A. Brito, Lippia sidoides and Myracrodruon urundeuva gel prevents alveolar bone resorption in experimental periodontitis in rats, Journal of Ethnopharmacology 113(2007).

DOI: 10.1016/j.jep.2007.07.010

Google Scholar

[11] A.M. Menezes, F.A. Rocha, H.V. Chaves, C.B. Carvalho, R.A. Ribeiro, G.A. Brito, Effect of sodium alendronate on alveolar bone resorption in experimental periodontitis in rats, Journal of Periodontology 76 (2005) 1901–(1909).

DOI: 10.1902/jop.2005.76.11.1901

Google Scholar

[12] B.J. Zimmerman, M.B. Grisham, D.N. Granger, Role of oxidants in ischemia/reperfusion-induced granulocyte infiltration, American Journal of Physiology 258(1990) 185–190.

DOI: 10.1152/ajpgi.1990.258.2.g185

Google Scholar

[13] G.W. Sullivan, I.J. Sarembock, J. Linden The role of inflammation in vascular diseases, Journal of Leukocyte Biology 67(2000) 591–602.

DOI: 10.1002/jlb.67.5.591

Google Scholar

[14] S.O. Iseri, G. Sener, M. Yüksel, G. Contuk, S. Cetinel, N. Gedik, B.C. Yegen, Ghrelin against alendronate-induced gastric damage in rats, Journal of Endocrinology 187(2005) 399–406.

DOI: 10.1677/joe.1.06432

Google Scholar

[15] S.A. Holanda Pinto, L.M. Pinto, G.M. Cunha, M.H. Chaves, F.A. Santos, V.S. Rao Anti-inflammatory effect of alpha, beta-Amyrin, a pentacyclic triterpene from Protium heptaphyllum in rat model of acute periodontitis, Inflammopharmacology  16(2008).

DOI: 10.1007/s10787-007-1609-x

Google Scholar

[16] M. A. Botelho, V.S. Rao, C.B. Carvalho, J.G. Bezerra-Filho, S.G. Fonseca, M.L. Vale, D. Montenegro, F. Cunha, R.A. Ribeiro, G.A. Brito, Lippia sidoides and Myracrodruon urundeuva gel prevents alveolar bone resorption in experimental periodontitis in rats, Journal of Ethnopharmacology 113 (2007).

DOI: 10.1016/j.jep.2007.07.010

Google Scholar

[17] Ö. Fentoglu, F.Y. Kırzıoglu, M.T. Bulut, D. Kumbul Doguc, E. Kulac, C Önder, M. Günhan, Evaluation of lipid peroxidation and oxidative DNA damage in patients with periodontitis and hyperlipidemia‎, Journal of Periodontology   86 (2015) 682–688.

DOI: 10.1902/jop.2015.140561

Google Scholar

[18] Y.S. Kim, S.J. Kang, J.W. Kim, H.R. Cho, S.B. Moon, K.Y. Kim, H.S. Lee, C.H. Han, S.K. Ku, Y.J. Lee, Effects of Polycan, a β-glucan, on experimental periodontitis and alveolar bone loss in Sprague-Dawley rats, Journal of Periodontal Research 47 (2012).

DOI: 10.1111/j.1600-0765.2012.01502.x

Google Scholar

[19] S.K. Ku, H.R. Cho, Y.S. Sung, S.J. Kang, Y.J. Lee, Effects of calcium gluconate on experimental periodontitis and alveolar bone loss in rats, Basic and Clinical Pharmacology and Toxicology 108 (2011) 241–250.

DOI: 10.1111/j.1742-7843.2010.00646.x

Google Scholar

[20] H. Toker, H. Ozdemir, K. Eren, H. Ozer, G. Sahin, N-acetylcysteine, a thiol antioxidant, decreases alveolar bone loss in experimental periodontitis in rats, ‎Journal of Periodontology 80 (2009) 672–678.

DOI: 10.1902/jop.2009.080509

Google Scholar

[21] J.H. Park, B.I. Seo, S.Y. Cho, K.R. Park, S.H. Choi, C.K. Han, C.H. Song, S.J. Park, S.K. Ku, Single oral dose toxicity study of prebrewed armeniacae semen in rats, Toxicology Research 29 (2013) 91–98.

DOI: 10.5487/tr.2013.29.2.091

Google Scholar

[22] M. Hatipoglu, N.Ö. Alptekin, M.C. Avunduk, Effects of alpha-tocopherol on gingival expression of inducible nitric oxide synthase in the rats with experimental periodontitis and diabetes, Nigerian Journal of Clinical Practice 4 (2016) 480-485.

DOI: 10.4103/1119-3077.183301

Google Scholar

[23] D. V. Srubilin, D. A. Enikeev, V. A. Myshkin, Role of the nitroxidergic system at the regulation of oxidative stress in rats' gingiva with experimental periodontitis, Fundamental studies 10-4 (2014) 724– 731.

Google Scholar

[24] F. Cosentino, J. Sill, Z. Kanusle, Role of superoxide anion in the mediation of endothelium-dependent contraction, Hypertension 5 (2014) 229 –235.

Google Scholar

[25] W.T. Clements., Le Sang-Rok, J. R. Bloomer, Nitrate Ingestion: A Review of the Health and Physical Performance aorta effects, Nutrients 11(2014) 5224–5264.

DOI: 10.3390/nu6115224

Google Scholar

[26] S. Lidder, A.J. Webb, Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway, Journal Clinical Pharmacology 4 (2013) 267– 275.

DOI: 10.1111/j.1365-2125.2012.04420.x

Google Scholar