3D Finite Elements Modeling of the Interfacial Stresses Bone/Dental Implant - Effects of the Geometric Parameters

Article Preview

Abstract:

A successful osseointegration involves the simultaneous optimization of the primary stability of the implant and the minimization of interfacial stresses bone - implant. In this context, the modeling of these stresses reports a great interest for researchers in last decades.The aim of this work is to study the effects of geometric parameters of a new model of titanium dental implant on the evolution of interfacial stresses bone /implant. For this, a dental implant of the second premolar in the lower jaw was considered, with different diameters, thread pitches and different thread forms. The profile of the interfacial stresses was presented for each case study, the results show a great similarity in the areas concerned, cortical bone, threaded region and cancellous bone, with the results obtained in the literature for other types of geometries.

You might also be interested in these eBooks

Info:

Pages:

32-44

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Lecloux, M. Lamy, La mise en charge immédiate en réhabilitation orale implantaire, Rev Med Liège 2007: Synthèse 2006 , 62 (2007) 36-41.

Google Scholar

[2] M. Davarpanah, H. Martinez, Implant large : indications, avantages et réflexions. Implant 1998; 4 : 275-277.

Google Scholar

[3] Lorraine Hoff , influence des traitements de surface implantaire sur l'accélération de l'ostéo-integration", université de lorraine , faculté d, odontologie, ( 2012).

Google Scholar

[4] S. Szmukler-Moncler, M. Davarpanah, P. Rajzbaum, P. M. Khoury, Protocoles de mise en charge et de temporisation immédiates, 19 (2013) 7-34.

Google Scholar

[5] T. Degorce, Les implants de larges diamètres, Synergie prothétique, 2, (2000) 365-377.

Google Scholar

[6] Y. Sato, M. Wadamoto, K. Tsuga and E.R. Teixeira, The effectiveness of element downsizing on a three-dimensional finite element model of bone trabecular in implant biomechanics, J Oral Rehabil, 26 , (1999) 288–291.

DOI: 10.1046/j.1365-2842.1999.00390.x

Google Scholar

[7] S. Sahin, M.C. Cehreli and E. Yalçın, The influence of functional forces on the biomechanics of implant-supported prostheses—a review, J Dent, 20 , (2002) 271–282.

Google Scholar

[8] L. Kong, Zexu Gu , K. Hu, Hongzhi Zhou , Y. Liu et B. Liu, Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: A three-dimensional finite element analysis, Advances in Engineering Software, 40, Issue 9, (2009).

DOI: 10.1016/j.advengsoft.2008.12.010

Google Scholar

[9] O. Kayabaş, E. Yüzbasıoğlu et F. Erzincanl, Static, dynamic and fatigue behaviors of dental implant using finite element method, Advances in Engineering Software, 37, (2006) 649–658.

DOI: 10.1016/j.advengsoft.2006.02.004

Google Scholar

[10] C. lin, Y. kuo, T. sheng lin, effects of dental implant length and bone quality on biomechanical responses in bone around implants: a 3-d non-linear finite element analysis, Biomed Eng Appl Basis Comm, ), 17, (2005) 44-49.

DOI: 10.4015/s1016237205000081

Google Scholar

[11] C. Lee,S. Lin, M. Kang, Effects of implant threads on the contact area and stress distribution of marginal bone, J Dent Sci, 5(3), (2010) 156−165.

DOI: 10.1016/s1991-7902(10)60023-2

Google Scholar

[12] S. Faegh, S. M¨ uft ¨, Load transfer along the bone–dental implant interface, Journal of Biomechanics , Elsevier , 43, (2010) 1761–1770.

DOI: 10.1016/j.jbiomech.2010.02.017

Google Scholar

[13] T. Li, K. Hub, L. Cheng, Y. Ding, Y. Ding ,J. Shao , L. Kong , Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality – A 3D finite element analysis, Applied Mathematical Modelling, 35 , (2011).

DOI: 10.1016/j.apm.2010.07.008

Google Scholar

[14] C. Liang-jian, H. Hao, L. Yi-min, L. Ting, G. Xiao-ping, W. Rui-fang, Finite element analysis of stress at implant−bone interface of dental implants with different structures, Nonferrous Met. Soc. China, 21, (2011) 1602−1610.

DOI: 10.1016/s1003-6326(11)60903-5

Google Scholar

[15] P. Vena , R. Contro, Micromechanical Analysis of the Trabecular Bone Stress State at the Interface with Metallic Biomedical Devices, Meccanica 37, (2002) 431–439.

Google Scholar

[16] L. Vidyasagar, P. Apse, Dental Implant Design and Biological Effects on Bone-Implant Interface, Stomatologija, Baltic Dental and Maxillofacial Journal, vol. 6, (2004) 51-54.

Google Scholar

[17] H. chou, J. Jagodnik, S. Mu ftu , Predictions of bone remodeling around dental implant systems, Journal of Biomechanics, 41 , (2008) 1365–1373.

DOI: 10.1016/j.jbiomech.2008.01.032

Google Scholar

[18] Z. Q. Lian, H. Guan, Y. C. Loo, Optimum Degree of Bone-Implant Contact in Bone Remodelling Induced by Dental Implant, Procedia Engineering , 14, (2011) 2972–2979.

DOI: 10.1016/j.proeng.2011.07.374

Google Scholar

[19] D. Lin, Q. WeiLi, N. Duckmanton, M. Swain, Mandibular bone remodeling induced by dental implant, Journal of Biomechanics , 43, (2010) 287–293.

DOI: 10.1016/j.jbiomech.2009.08.024

Google Scholar

[20] Z. Lian, H. Guan, S. Ivanovski, Y-C. Loo, N. W. Johnson, H. Zhang, Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant, Internationel Journal of Oral Maxillofacial Surgery, 39 (2010) 690–698.

DOI: 10.1016/j.ijom.2010.03.020

Google Scholar

[21] U. Lekholm and G. Zarb, Patient selection and preparation. In: P.I. Brånemark, G. Zarb and T. Albrektsson, Editors, Tissue-integrated protheses. Osseointegration in clinical dentistry, Quintessence, Chicago, (1985) 199–209.

Google Scholar

[22] Zimmer dental, – Implant dentaire zimmer® tapered screw-vent®, Compendium Scientifique ; ©2014 Zimmer Dental Inc. ZD1380FR, Rév. 4/14, (2014).

Google Scholar