Magneto-Structural and Antimicrobial Properties of Sodium Doped Lanthanum Manganite Magnetic Nanoparticles for Biomedical Applications: Influence of Silica Coating

Article Preview

Abstract:

Coating of magnetic nanoparticles (MNPs) is usually a requirement prior to their utilization in biomedical applications. However, coating can influence the magneto-structural properties of MNPs thereby imparting their applications. The present work highlights the combustion synthesis of Na-doped lanthanum manganites (LNMO) and the influence of silica coatings on the magneto-structural properties, colloidal stability and antimicrobial properties of LNMO MNPs with their biomedical applications in mind. The crystalline perovskite structure was the same both for the bare and silica coated LNMO samples while there was a slight increase in crystallite size after coating. The FTIR spectral analysis, reduction in agglomeration of the particles and the elemental composition of the coated nanoparticles confirmed the presence of silica. The magnetization values of 34 emu/g and 29 emu/g recorded for bare and coated LNMO samples, respectively show that LNMO MNPs retained its ferromagnetic behaviour after silica coating. The pH dependent zeta potentials of the coated sample is-22.20 mV at pH 7.4 (physiological pH) and-18 mV at pH 5.0 (cell endosomal pH). Generally, silica coating reduced the antibacterial activity of the sample except for Bacillus spp where the antibacterial activity was the same with the bare sample. These results showed that while silica coating had marginal effect on the crystalline structure, size and magnetization of LNMO MNPs, it reduced the antibacterial activity of LNMO MNPs and enhanced greatly the colloidal stability of LNMO nanoparticles. Keywords: Na-doped lanthanum manganites, Silica coating, magnetic nanoparticles, biomedical applications, antimicrobial properties, colloidal stability

You might also be interested in these eBooks

Info:

[1] R. Mahendiran, S. K. Tiwary, A. K. Raychaudhuri, T. V. Ramakrishnan, R. Mahesh, N. Rangavittal, C. N. R. Rao, Phys Rev B 1996, 53, 3348–3358.

Google Scholar

[2] R. Mahendiran, R. Mahesh, A. K. Raychaudhuri, C. N. R. Rao, Phys. Rev. B 1996, 53, 12160–12164.

Google Scholar

[3] Y. Sun, X. J. Xu, W. Tong, Y. H. Zhang, Appl Phys Lett 2001, 78, 643–645.

Google Scholar

[4] S. Roy, Y. Q. Guo, S. Venkatesh, N. Ali, J. Phys.: Condens. Matter 2001, 13, 9547.

Google Scholar

[5] L. Malavasi, M. C. Mozzati, S. Polizzi, C. B. Azzoni, G. Flor, Chem. Mater. 2003, 15, 5036.

Google Scholar

[6] D. Kami, S. Takeda, Y. Itakura, S. Gojo, M. Watanabe, M. Toyoda, Int. J. Mol. Sci. 2011, 12, 3705–3722.

DOI: 10.3390/ijms12063705

Google Scholar

[7] S. Huang, R. Juang, J. Nanopart. Res. 2011, 13, 4411–4430.

Google Scholar

[8] B. D. Kevadiya, C. Woldstad, B. M. Ottemann, P. Dash, B. R. Sajja, B. Lamberty, B. Morsey, T. Kocher, R. Dutta, A. N. Bade, Y. Liu, S. E. Callen, H. S. Fox, S. N. Byrareddy, J. M. McMillan, T. K. Bronich, B. J. Edagwa, M. D. Boska, H. E. Gendelman, Theranostics 2018; 8(1):256-276.

DOI: 10.7150/thno.22764

Google Scholar

[9] B. D. Kevadiya, A. N. Bade, C. Woldstad, B. N. Edagwa, H. E. Gendelman, Acta Biomaterialia 2017, 49, 507-520.

DOI: 10.1016/j.actbio.2016.11.071

Google Scholar

[10] L. Shen, B. Li, Y. Qiao, Materials 2018, 11(2), 324.

Google Scholar

[11] S. A. Pour, H. R. Shaterian, Pharmaceutical Chemistry Journal 2018, 51(10), 852-862.

Google Scholar

[12] P. Chen, B. Cui, X. Cui, W. Zhao, Y. Wang, Journal of Alloys and Compounds 2017, 699, 526-533.

Google Scholar

[13] M. Mahdavi, M. B. Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. Ab Rahman, J. Amin, 2013, 18, 7533-7548.

DOI: 10.3390/molecules18077533

Google Scholar

[14] D. Kami, S. Takeda, Y. Itakura, S. Gojo, M. Watanabe, M. Toyoda, Int. J. Mol. Sci. 2011, 12, 3705–3722.

DOI: 10.3390/ijms12063705

Google Scholar

[15] S. Larumbe, C. Gomez-Polo, J. Perez-Landazabal, J. M. J. Pastor, Phys Condens. Matter 2012, 24, 1–6.

Google Scholar

[16] A. G. Kolhatkar, A. C. Jamison, D. Litvinov, R. C. Willson, T. R. Lee, Int. J. Mol. Sci. 2013, 14, 15977-16009.

DOI: 10.3390/ijms140815977

Google Scholar

[17] S. Li, E. Wang, C. Tian, B. Mao, Z. Kang, Q. Li, G. Sun, J Solid State Chem 2008, 181, 1650– 1658.

Google Scholar

[18] N. Sanpo, C. C. Berndt, C. Wen, J. Wang, Acta Biomater 2013, 9, 5830–5837.

Google Scholar

[19] X. Sheena, C. Harry, P. Nimila, S. Thankachan, M. S. Rintu, E. M. Mohammed, Res J Pharm Biol Chem Sci 2014, 5(5), 364-371.

Google Scholar

[20] D. Gingasu, I. Mindru, L. Patron, J. M. Calderon-Moreno, O. C. Mocioiu, S. Preda, N. Stanica, S. Nita, N. Dobre, M. Popa, G. Gradisteanu, M. C. Chifiriuc, J Nanomater 2016, dx.doi.org/10.1155/2016/2106756.

DOI: 10.1155/2016/2106756

Google Scholar

[21] D. Weng, C. Lei, T. T. Wu, R. Sun, M. Shen, Y. Lu, Prog Nat Sci 2015, http://dx.doi.org/10.1016/j.pnsc.2015.05.003.

Google Scholar

[22] S. Z. Tan, L. C. Ding, Y. L. Liu, Y. S. Ouyang, Y. B. Chen, Chin. Chem. Lett. 2007, 18, 85–88.

Google Scholar

[23] B. Mojic, K. P. Giannakopoulos, Z. Cvejic, V. V. Srdic, Ceramics International 2012, 38, 6635–6641.

Google Scholar

[24] A. S. Buteica, D. E. Mihaiescu, A. Grumezescu, B. S. Vasile, A. Popescu, O. Mihaiescu, Dig J Nanomater Bios 2010, 5, 927–932.

Google Scholar

[25] S. Saha, B. Gupta, K. Gupta, M. G. Chaudhuri, Applied Nanoscience 2016, DOI 10.1007/s13204-016-0528-9.

Google Scholar

[26] C. O. Ehi-Eromosele, B. I. Ita, K. O. Ajanaku, A. Edobor-Osoh, O. Aladesuyi, S. A. Adalikwu, F. E. Ehi-Eromosele, Bull. Mater. Sci. 2015, 38(7), 1749–1755.

DOI: 10.1007/s12034-015-1046-1

Google Scholar

[27] W. Stober, A. Fink, E. Bohn, J Colloid Interface Sci 1968, 26, 62–69.

Google Scholar

[28] C. O. Ehi-Eromosele, J. A. O. Olugbuyiro, A. A. Adebisi, A. Edobor-Osoh, and I. M. Ishola, Journal of Bionanoscience 2017, 11, 1–6.

DOI: 10.1166/jbns.2017.1478

Google Scholar

[29] J. Choi, J. C. Kim, Y. B. Lee, I. S. Kim, Y. K. Park, N. H. Hur, Chem Commun 2007, 16, 1644-1646.

Google Scholar

[30] V. Uskokovic, A. Kosak, M. Drofenik, Int J Appl Ceram Tec 2006, 3(2), 134–143.

Google Scholar

[31] F. Gao, R. A. Lewis, X. L. Wang, S. X. Dou, Journal of Alloys and Compounds 2002, 347, 314–318.

Google Scholar

[32] D. A. Macedo, M. R. Cesário, G. L. Souza, B. Cela, C. A. Paskocimas, A. E. Martinelli, D. A. Melo, R. M. Nascimento, Infrared Spectroscopy Techniques in the Characterization of SOFC Functional Ceramics, Infrared Spectroscopy Materials Science, Engineering and Technology, Prof. Theophanides Theophile (Ed.). InTech, Croatia, 2012, pp.304-404.

DOI: 10.5772/34884

Google Scholar

[33] NIST Standard Reference Database 69, http://webbook.nist.gov/cgi/cbook.cgi.

Google Scholar

[34] A. Bertoluzza, C. Fagnano, M. A. Morelli, V. Gottardi, M. Guglielni, Journal of Non Crystalline Solids 1982, 48(1), 117-128.

DOI: 10.1016/0022-3093(82)90250-2

Google Scholar

[35] M. C. Matos, L. M. Iiharco, R. M. Almeida, Journal of Non-Crystalline Solids 1992, 147, 232-237.

Google Scholar

[36] H. Yoshino, K. Kamiya, H. Nasu, Journal of Non-Crystalline Solids 1990, 126, 68-78.

Google Scholar

[37] X. Xiao, K. Huang, Q. He, Transactions of Non-ferrous Metals Society of China 2007, 17, 1118-1122.

Google Scholar

[38] R. Scaffaro, L. Botta, G. L. Re, R. Bertani, R. Milani, A. Sassi, Journal of Materials Chemistry 2011, 21, 3849-3857.

Google Scholar

[39] A. B. Salunkhe, V. M. Khot, N. D. Thorat, M. R. Phadatare, C. I. Sathish, D. S. Dhawale, S. H. Pawar, Applied Surface Science 2013, 264, 598-604.

DOI: 10.1016/j.apsusc.2012.10.073

Google Scholar

[40] S. A. Shah, M. H. Asdi, M. U. Hashmi, M. F. Umar, S. Awan, Materials Chemistry and Physics 2012, 137, 365-371.

Google Scholar

[41] M. J. Meziani, J. Zajac, D. J. Jones, J. Roziere, S. Partyka, Langmuir 1997, 13, 5409-5417.

Google Scholar

[42] N. D. Thorat, S. V. Otari, R. A. Bohara, H. M. Yadav, V. M. Khot, A. B. Salunkhe, M. R. Phdatre, A. I. Prasad, R. S. Ningthoujam, S. H. Pawar, Materials Science and Engineering C 2014, 42, 637-646.

DOI: 10.1016/j.msec.2014.06.016

Google Scholar

[43] K. Kawahara, K. Tsuruda, M. Morishita, M. Uchida, Dental Mater 2000, 16, 452–455.

Google Scholar

[44] M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. J. Aberasturi, I. R. Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, M. Mahmoudi, Trends Biotechnol 2012, 30(10), 499–511.

DOI: 10.1016/j.tibtech.2012.06.004

Google Scholar

[45] Y. He, S. Ingudam, S. Reed, A. Gehring, T. P. Strobaugh, P. Irwin, J Nanobiotechnology 2016, 14, 54.

Google Scholar

[46] S. Agnihotri, R. Pathak, D. Jha, I. Roy, H. K. Gautam, A. K. Sharma, P. Kumar, New J. Chem. 2015, 39, 6746-6755.

Google Scholar