[1]
E. A. Grice and J. A. Segre, The skin microbiome., Nat. Rev. Microbiol. 9 (2011) 244–253.
Google Scholar
[2]
S. P. Zhong, Y. Z. Zhang, and C. T. Lim, Tissue scaffolds for skin wound healing and dermal reconstruction, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2 (2010) 510–525.
DOI: 10.1002/wnan.100
Google Scholar
[3]
G. Kaustabh, R. Clark, R. Lanza, R. Langer, and J. Vacanti, Wound repair. Principles of Tissue Engineering, Burlingt. Acad. Press. (2007) 1149–1166.
Google Scholar
[4]
C. Daunton, S. Kothari, L. Smith, and D. Steele, A history of materials and practices for wound management, Wound Practice and Research. 20 (2012) 10–15, (2012).
Google Scholar
[5]
Z. Mirzakhanian, K. Faghihi, A. Barati, and H. R. Momeni, Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent., J. Biomater. Sci. Polym. Ed. 26 (2005) 1439–1451.
DOI: 10.1080/09205063.2015.1100496
Google Scholar
[6]
J. S. Boateng, K. H. Matthews, H. N. E. Stevens, and G. M. Eccleston, Wound healing dressings and drug delivery systems: A review, Journal of Pharmaceutical Sciences, 97 (2008) 2892–2923.
DOI: 10.1002/jps.21210
Google Scholar
[7]
M. J. Larson, J. C. Bowersox, R. C. Lim Jr., and J. R. Hess, Efficacy of a fibrin hemostatic bandage in controlling hemorrhage from experimental arterial injuries, Arch Surg. 130 (1995) 420–422.
DOI: 10.1001/archsurg.1995.01430040082018
Google Scholar
[8]
I. Wedmore, J. G. McManus, A. E. Pusateri, and J. B. Holcomb, A Special Report on the Chitosan-based Hemostatic Dressing: Experience in Current Combat Operations, J. Trauma Inj. Infect. Crit. Care. 60 (2006) 655–658.
DOI: 10.1097/01.ta.0000199392.91772.44
Google Scholar
[9]
M. Szycher and S. Lee, Modern wound dressings: a systematic approach to wound healing,, J. Biomater. Appl. 7 (1992) 142–213.
DOI: 10.1177/088532829200700204
Google Scholar
[10]
H. B. Alam, Z. Chen, A. Jaskille, R. I. L. C. Querol, E. Koustova, R. Inocencio, R. Conran, A. Seufert, N. Ariaban, K. Toruno, and P. Rhee, Application of a Zeolite Hemostatic Agent Achieves 100% Survival in a Lethal Model of Complex Groin Injury in Swine, J. Trauma Inj. Infect. Crit. Care. 56 (2004).
DOI: 10.1097/01.ta.0000127763.90890.31
Google Scholar
[11]
V. Jones, The use of gauze: Will it ever change?, International Wound Journal. 3 (2006) 79–86.
Google Scholar
[12]
D. Kulling, J. N. Vournakis, S. Woo, M. V Demcheva, D. U. Tagge, G. Rios, S. Finkielsztein, and R. H. Hawes, Endoscopic injection of bleeding esophageal varices with a poly-N- acetyl glucosamine gel formulation in the canine portal hypertension model, Gastrointest. Endosc. 49 (1999).
DOI: 10.1016/s0016-5107(99)70298-1
Google Scholar
[13]
D. Queen, H. Orsted, H. Sanada, and G. Sussman, A dressing history., Int. Wound J., vol. 1 (2004) 59–77.
DOI: 10.1111/j.1742-4801.2004.0009.x
Google Scholar
[14]
D. L. Steed, Debridement, American Journal of Surgery,. 18 (2004) 71–74, May-(2004).
Google Scholar
[15]
G. D. Winter and J. T. Scales, Effect of Air drying and Dressings on the Surface of a Wound, Nature. 4862 (1963) 91–92.
DOI: 10.1038/197091b0
Google Scholar
[16]
G. D. Winter, Formation of the scab and the rate of epithelisation of superficial wounds in the skin of the young domestic pig, Nature. 193 (1962) 293–294.
DOI: 10.1038/193293a0
Google Scholar
[17]
G. A. Rahman, I. A. Adigun, I. F. Yusuf, and C. K. P. Ofoegbu, Wound dressing where there is limitation of choice, Niger. J. Surg. Res. 8 (2006) 151–155.
DOI: 10.4314/njsr.v8i3-4.54882
Google Scholar
[18]
V. Jones, J. E. Grey, and K. G. Harding, Wound dressings., BMJ. 332 (2006) 777–80.
Google Scholar
[19]
W. Jones, Manioc in Africa:Stanford University Press, California, U.S.A., Food Res. Institute, Stud. Trop. Dev.13 (1959) 373–374.
Google Scholar
[20]
V. Lebot, Tropical root and tuber crops: cassava, sweet potato, yams and aroids. Wallingford UK: CABI. (2009) 413.
DOI: 10.1079/9781789243369.0273
Google Scholar
[21]
F. Nweke, New challenges in the cassava transformation in Nigeria and Ghana, Int. Food Policy Res. Inst. 118 (2004) 1–103.
Google Scholar
[22]
MoFA (Ministry of Food and Agriculture), Agriculture in Ghana: Facts and Figures 2010,, SRID. (2011).
Google Scholar
[23]
E. Okai, Genetic Diversity in Some Local Cassava Cultivars in Ghana, (2001).
Google Scholar
[24]
MoFA (Ministry of Food and Agriculture), Food and Agriculture Development Policy (FASDEP II),, SRID, Accra, Ghana. (2007).
Google Scholar
[25]
G. Henry and Westby Anderew, Global cassava starch markets: current situation and outlook. (2000) 79–100.
Google Scholar
[26]
J. Hillocks and J. Thresh, Cassava: biology, production and utilization. Wallingford: CABI. (2002).
Google Scholar
[27]
D. L. Jennings and C. Iglesias, Breeding for Crop Improvement, Cassava: biology, production and utilization. CABI, Wallingford. (1994) 149–166.
DOI: 10.1079/9780851995243.0149
Google Scholar
[28]
A. P. Cardoso, E. Mirione, M. Ernesto, F. Massaza, J. Cliff, M. Rezaul Haque, J. H. Bradbury, and J. H. Bradbury, Processing of cassava roots to remove cyanogens Article in Press, J. Food Compos. Anal. 18 (2005) 451–460.
DOI: 10.1016/j.jfca.2004.04.002
Google Scholar
[29]
G. Braidotti, Cassava, Cyanide and Konzo Disease, Partners Res. Dev. (2011) 14.
Google Scholar
[30]
R. K. Bhandari, R. P. Oda, I. Petrikovics, D. E. Thompson, M. Brenner, S. B. Mahon, V. S. Bebarta, G. A. Rockwood, and B. A. Logue, Cyanide toxicokinetics: the behavior of cyanide, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid in multiple animal models., J. Anal. Toxicol. 38 (2014).
DOI: 10.1093/jat/bku020
Google Scholar
[31]
International Starch Institute (ISI), ISI 13-2e Determination of starch in tubers by underwater weight, Sci. Park Aarhus, Denmark. (1999).
Google Scholar
[32]
V. Ravindran, Preparation of cassava leaf products and their use as animal feeds, Food Agric. Organ. Anim. Prod. Heal. 95 (1992) 111–125.
Google Scholar
[33]
B. Nambisan, Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety, Food Chem. Toxicol. 49 (2011) 690–693.
DOI: 10.1016/j.fct.2010.10.035
Google Scholar
[34]
O. O. Tewe and J. H. Maner, Performance and pathophysiological changes in pregnant pigs fed cassava diets containing different levels of cyanide, Res. Vet. Sci. 30 (1981) 147–51.
DOI: 10.1016/s0034-5288(18)32572-4
Google Scholar
[35]
R. D. Cooke, An enzymatic assay for the total cyanide content of cassava (manihot esculenta crantz), J. Sci. Food Agric. 29 (1978) 345–352.
DOI: 10.1002/jsfa.2740290408
Google Scholar
[36]
G. Amenorpe, H. Amoatey, A. Darkwa, G. Banini, and V. Elloh, Peak Root and Starch Weights of Ten Early Bulking Cultivars of Cassava (Manihot Esculenta, J. Ghana Sci. Assoc. 9 (2009) 54-60.
DOI: 10.4314/jgsa.v9i2.18014
Google Scholar
[37]
A. Edhirej, S. M. Sapuan, M. Jawaid, and N. I. Zahari, Cassava: Its polymer, fiber, composite, and application, Polym. Compos. 38 (2017) 555 - 570.
DOI: 10.1002/pc.23614
Google Scholar
[38]
L. Larbie, C. F. Hayford, and E. E. Kaufmann, Characterisation of Cassava Fibre for Use As a Biomaterial, Int. J. Eng. Sci. Technol. 4 (2012) 3537–3545.
Google Scholar
[39]
J. Chen, S. Jo, and K. Park, Polysaccharide hydrogels for protein drug delivery, Carbohydr. Polym. 28 (1995) 69–76.
Google Scholar
[40]
D. E. Akin, J. A. Foulk, and R. B. Dodd, Components Clemson , Text. Res. J. 72 (2002) 510–514.
Google Scholar
[41]
H. Sharma, Studies on chemical and enzyme retting of flax on a semi-industrial scale and analysis of the effluents for their physico-chemical components, Int. Biodeterior. 5 (1987) 125–132.
DOI: 10.1016/0265-3036(87)90022-4
Google Scholar
[42]
P. Tahir, A. B. Ahmed, S. O. A. SaifulAzry, and Z. Ahmed, Retting process of some bast plant fibres and its effect on fibre quality: A review, BioResources. 6 (2011) 5260–5281.
Google Scholar
[43]
U. Modibbo, B. Aliyu, I. Nkafamiya, and A. Manji, The effect of moisture imbibition on cellulosic bast fibres as industrial raw materials, Int. J. Phys. Sci. 2 (2007) 16–25.
Google Scholar
[44]
Z. Zhen, X. Liu, T. Huang, T. Xi, and Y. Zheng, Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys, Mater. Sci. Eng. C. 46 (2015) 202–206.
DOI: 10.1016/j.msec.2014.08.038
Google Scholar
[45]
F. R. Frederick R. Hallett, Physics for the biological sciences : a topical approach to biophysical concepts. Concept Press, (1992).
Google Scholar
[46]
K. L. Pickering, M. G. A. Efendy, and T. M. Le, A review of recent developments in natural fibre composites and their mechanical performance, Composites Part A: Applied Science and Manufacturing. 83 (2016) 98–112.
DOI: 10.1016/j.compositesa.2015.08.038
Google Scholar
[47]
G. I. Sandle, Salt and water absorption in the human colon: a modern appraisal., Gut. 43 (1998) 294–299.
DOI: 10.1136/gut.43.2.294
Google Scholar
[48]
I. Emery, The primary structures of fabrics : an illustrated classification. Thames & Hudson, (2009).
Google Scholar
[49]
T. Alomayri, H. Assaedi, F. U. A. Shaikh, and I. M. Low, Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites, J. Asian Ceram. Soc. 57 (2014) 360–365.
DOI: 10.1016/j.jascer.2014.05.005
Google Scholar
[50]
T. G. Brodie and A. E. Russell, The Determination of the Coagulation-Time of Blood., J. Physiol., 21 (1897) 403–407.
Google Scholar
[51]
J. Margolis, Initiation of blood coagulation by glass and related surfaces., J. Physiol. 137 (1957) 95–109.
DOI: 10.1113/jphysiol.1957.sp005799
Google Scholar
[52]
B. C. Evans, C. E. Nelson, S. S. Yu, K. R. Beavers, A. J. Kim, H. Li, H. M. Nelson, T. D. Giorgio, and C. L. Duvall, Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs., J. Vis. Exp., (2013).
DOI: 10.3791/50166
Google Scholar
[53]
Takara Bio Inc., LDH Cytotoxicity Detection Kit, In Vitro. 25 (2007) 712–720.
Google Scholar
[54]
P. Dhas, S. Jayakumar, P. Chitra, and A. Mary, Study of the effects of hydrogen cyanide exposure in Cassava workers, Indian Journal of Occupational and Environmental Medicine. 15 (2011) 133.
DOI: 10.4103/0019-5278.93204
Google Scholar