Characterization of Cassava Fibre for Potential Wound Dressing Application

Article Preview

Abstract:

Wound dressing is the application of a sterile pad to protect a wound from further harm and promote healing. Over the past decades, various materials including calcium alginate, hydrogel, hydrocolloid and gauze based wound dressing materials have been developed. Unfortunately, shortcomings such as potential allergic reaction, high cost, short shelf life and scarcity have been associated with their use. In developing countries such as Ghana, sterilized gauze is commonly used in wound dressing but it causes scar formation and traumatic pain during removal. In addressing the issues of cost and availability, there may be local materials like cassava (Manihot esculenta) with the ability to aid in wound healing. Cassava is a cheap staple crop grown in Africa which is rich in carbohydrate, fibre and minerals. This research characterized three genotypes of cassava (IITA-TMS-GAEC-160006 (IT6), IITA-TMS-GAEC-160004 (IT4) and Afisiafi (Afi)). These genotypes have been studied in terms of their fibre content, fluid absorption capacity, hemolytic ability and their ability to promote rapid blood coagulation (coagulation time). Fibre samples were soaked in deionized (DI) water and PBS (Phosphate buffered saline) and at different time intervals the swollen samples were weighed. Fibre samples were also brought into contact with human blood and toxicity of samples determined. The results reveal that the rate of absorption of fluid by fibres in both DI water and PBS ranges between 0.66-0.93 g/min and fibres are generally non-toxic to blood cells. The fibre properties were compared with gauze and from these, some genotypes of cassava fibre were recommended for further research towards the design of a wound dressing material.

You might also be interested in these eBooks

Info:

Pages:

47-58

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. A. Grice and J. A. Segre, The skin microbiome., Nat. Rev. Microbiol. 9 (2011) 244–253.

Google Scholar

[2] S. P. Zhong, Y. Z. Zhang, and C. T. Lim, Tissue scaffolds for skin wound healing and dermal reconstruction, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2 (2010) 510–525.

DOI: 10.1002/wnan.100

Google Scholar

[3] G. Kaustabh, R. Clark, R. Lanza, R. Langer, and J. Vacanti, Wound repair. Principles of Tissue Engineering, Burlingt. Acad. Press. (2007) 1149–1166.

Google Scholar

[4] C. Daunton, S. Kothari, L. Smith, and D. Steele, A history of materials and practices for wound management, Wound Practice and Research. 20 (2012) 10–15, (2012).

Google Scholar

[5] Z. Mirzakhanian, K. Faghihi, A. Barati, and H. R. Momeni, Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent., J. Biomater. Sci. Polym. Ed. 26 (2005) 1439–1451.

DOI: 10.1080/09205063.2015.1100496

Google Scholar

[6] J. S. Boateng, K. H. Matthews, H. N. E. Stevens, and G. M. Eccleston, Wound healing dressings and drug delivery systems: A review, Journal of Pharmaceutical Sciences, 97 (2008) 2892–2923.

DOI: 10.1002/jps.21210

Google Scholar

[7] M. J. Larson, J. C. Bowersox, R. C. Lim Jr., and J. R. Hess, Efficacy of a fibrin hemostatic bandage in controlling hemorrhage from experimental arterial injuries, Arch Surg. 130 (1995) 420–422.

DOI: 10.1001/archsurg.1995.01430040082018

Google Scholar

[8] I. Wedmore, J. G. McManus, A. E. Pusateri, and J. B. Holcomb, A Special Report on the Chitosan-based Hemostatic Dressing: Experience in Current Combat Operations, J. Trauma Inj. Infect. Crit. Care. 60 (2006) 655–658.

DOI: 10.1097/01.ta.0000199392.91772.44

Google Scholar

[9] M. Szycher and S. Lee, Modern wound dressings: a systematic approach to wound healing,, J. Biomater. Appl. 7 (1992) 142–213.

DOI: 10.1177/088532829200700204

Google Scholar

[10] H. B. Alam, Z. Chen, A. Jaskille, R. I. L. C. Querol, E. Koustova, R. Inocencio, R. Conran, A. Seufert, N. Ariaban, K. Toruno, and P. Rhee, Application of a Zeolite Hemostatic Agent Achieves 100% Survival in a Lethal Model of Complex Groin Injury in Swine, J. Trauma Inj. Infect. Crit. Care. 56 (2004).

DOI: 10.1097/01.ta.0000127763.90890.31

Google Scholar

[11] V. Jones, The use of gauze: Will it ever change?, International Wound Journal. 3 (2006) 79–86.

Google Scholar

[12] D. Kulling, J. N. Vournakis, S. Woo, M. V Demcheva, D. U. Tagge, G. Rios, S. Finkielsztein, and R. H. Hawes, Endoscopic injection of bleeding esophageal varices with a poly-N- acetyl glucosamine gel formulation in the canine portal hypertension model, Gastrointest. Endosc. 49 (1999).

DOI: 10.1016/s0016-5107(99)70298-1

Google Scholar

[13] D. Queen, H. Orsted, H. Sanada, and G. Sussman, A dressing history., Int. Wound J., vol. 1 (2004) 59–77.

DOI: 10.1111/j.1742-4801.2004.0009.x

Google Scholar

[14] D. L. Steed, Debridement, American Journal of Surgery,. 18 (2004) 71–74, May-(2004).

Google Scholar

[15] G. D. Winter and J. T. Scales, Effect of Air drying and Dressings on the Surface of a Wound, Nature. 4862 (1963) 91–92.

DOI: 10.1038/197091b0

Google Scholar

[16] G. D. Winter, Formation of the scab and the rate of epithelisation of superficial wounds in the skin of the young domestic pig, Nature. 193 (1962) 293–294.

DOI: 10.1038/193293a0

Google Scholar

[17] G. A. Rahman, I. A. Adigun, I. F. Yusuf, and C. K. P. Ofoegbu, Wound dressing where there is limitation of choice, Niger. J. Surg. Res. 8 (2006) 151–155.

DOI: 10.4314/njsr.v8i3-4.54882

Google Scholar

[18] V. Jones, J. E. Grey, and K. G. Harding, Wound dressings., BMJ. 332 (2006) 777–80.

Google Scholar

[19] W. Jones, Manioc in Africa:Stanford University Press, California, U.S.A., Food Res. Institute, Stud. Trop. Dev.13 (1959) 373–374.

Google Scholar

[20] V. Lebot, Tropical root and tuber crops: cassava, sweet potato, yams and aroids. Wallingford UK: CABI. (2009) 413.

DOI: 10.1079/9781789243369.0273

Google Scholar

[21] F. Nweke, New challenges in the cassava transformation in Nigeria and Ghana, Int. Food Policy Res. Inst. 118 (2004) 1–103.

Google Scholar

[22] MoFA (Ministry of Food and Agriculture), Agriculture in Ghana: Facts and Figures 2010,, SRID. (2011).

Google Scholar

[23] E. Okai, Genetic Diversity in Some Local Cassava Cultivars in Ghana, (2001).

Google Scholar

[24] MoFA (Ministry of Food and Agriculture), Food and Agriculture Development Policy (FASDEP II),, SRID, Accra, Ghana. (2007).

Google Scholar

[25] G. Henry and Westby Anderew, Global cassava starch markets: current situation and outlook. (2000) 79–100.

Google Scholar

[26] J. Hillocks and J. Thresh, Cassava: biology, production and utilization. Wallingford: CABI. (2002).

Google Scholar

[27] D. L. Jennings and C. Iglesias, Breeding for Crop Improvement, Cassava: biology, production and utilization. CABI, Wallingford. (1994) 149–166.

DOI: 10.1079/9780851995243.0149

Google Scholar

[28] A. P. Cardoso, E. Mirione, M. Ernesto, F. Massaza, J. Cliff, M. Rezaul Haque, J. H. Bradbury, and J. H. Bradbury, Processing of cassava roots to remove cyanogens Article in Press, J. Food Compos. Anal. 18 (2005) 451–460.

DOI: 10.1016/j.jfca.2004.04.002

Google Scholar

[29] G. Braidotti, Cassava, Cyanide and Konzo Disease, Partners Res. Dev. (2011) 14.

Google Scholar

[30] R. K. Bhandari, R. P. Oda, I. Petrikovics, D. E. Thompson, M. Brenner, S. B. Mahon, V. S. Bebarta, G. A. Rockwood, and B. A. Logue, Cyanide toxicokinetics: the behavior of cyanide, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid in multiple animal models., J. Anal. Toxicol. 38 (2014).

DOI: 10.1093/jat/bku020

Google Scholar

[31] International Starch Institute (ISI), ISI 13-2e Determination of starch in tubers by underwater weight, Sci. Park Aarhus, Denmark. (1999).

Google Scholar

[32] V. Ravindran, Preparation of cassava leaf products and their use as animal feeds, Food Agric. Organ. Anim. Prod. Heal. 95 (1992) 111–125.

Google Scholar

[33] B. Nambisan, Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety, Food Chem. Toxicol. 49 (2011) 690–693.

DOI: 10.1016/j.fct.2010.10.035

Google Scholar

[34] O. O. Tewe and J. H. Maner, Performance and pathophysiological changes in pregnant pigs fed cassava diets containing different levels of cyanide, Res. Vet. Sci. 30 (1981) 147–51.

DOI: 10.1016/s0034-5288(18)32572-4

Google Scholar

[35] R. D. Cooke, An enzymatic assay for the total cyanide content of cassava (manihot esculenta crantz), J. Sci. Food Agric. 29 (1978) 345–352.

DOI: 10.1002/jsfa.2740290408

Google Scholar

[36] G. Amenorpe, H. Amoatey, A. Darkwa, G. Banini, and V. Elloh, Peak Root and Starch Weights of Ten Early Bulking Cultivars of Cassava (Manihot Esculenta, J. Ghana Sci. Assoc. 9 (2009) 54-60.

DOI: 10.4314/jgsa.v9i2.18014

Google Scholar

[37] A. Edhirej, S. M. Sapuan, M. Jawaid, and N. I. Zahari, Cassava: Its polymer, fiber, composite, and application, Polym. Compos. 38 (2017) 555 - 570.

DOI: 10.1002/pc.23614

Google Scholar

[38] L. Larbie, C. F. Hayford, and E. E. Kaufmann, Characterisation of Cassava Fibre for Use As a Biomaterial, Int. J. Eng. Sci. Technol. 4 (2012) 3537–3545.

Google Scholar

[39] J. Chen, S. Jo, and K. Park, Polysaccharide hydrogels for protein drug delivery, Carbohydr. Polym. 28 (1995) 69–76.

Google Scholar

[40] D. E. Akin, J. A. Foulk, and R. B. Dodd, Components Clemson , Text. Res. J. 72 (2002) 510–514.

Google Scholar

[41] H. Sharma, Studies on chemical and enzyme retting of flax on a semi-industrial scale and analysis of the effluents for their physico-chemical components, Int. Biodeterior. 5 (1987) 125–132.

DOI: 10.1016/0265-3036(87)90022-4

Google Scholar

[42] P. Tahir, A. B. Ahmed, S. O. A. SaifulAzry, and Z. Ahmed, Retting process of some bast plant fibres and its effect on fibre quality: A review, BioResources. 6 (2011) 5260–5281.

Google Scholar

[43] U. Modibbo, B. Aliyu, I. Nkafamiya, and A. Manji, The effect of moisture imbibition on cellulosic bast fibres as industrial raw materials, Int. J. Phys. Sci. 2 (2007) 16–25.

Google Scholar

[44] Z. Zhen, X. Liu, T. Huang, T. Xi, and Y. Zheng, Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys, Mater. Sci. Eng. C. 46 (2015) 202–206.

DOI: 10.1016/j.msec.2014.08.038

Google Scholar

[45] F. R. Frederick R. Hallett, Physics for the biological sciences : a topical approach to biophysical concepts. Concept Press, (1992).

Google Scholar

[46] K. L. Pickering, M. G. A. Efendy, and T. M. Le, A review of recent developments in natural fibre composites and their mechanical performance, Composites Part A: Applied Science and Manufacturing. 83 (2016) 98–112.

DOI: 10.1016/j.compositesa.2015.08.038

Google Scholar

[47] G. I. Sandle, Salt and water absorption in the human colon: a modern appraisal., Gut. 43 (1998) 294–299.

DOI: 10.1136/gut.43.2.294

Google Scholar

[48] I. Emery, The primary structures of fabrics : an illustrated classification. Thames & Hudson, (2009).

Google Scholar

[49] T. Alomayri, H. Assaedi, F. U. A. Shaikh, and I. M. Low, Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites, J. Asian Ceram. Soc. 57 (2014) 360–365.

DOI: 10.1016/j.jascer.2014.05.005

Google Scholar

[50] T. G. Brodie and A. E. Russell, The Determination of the Coagulation-Time of Blood., J. Physiol., 21 (1897) 403–407.

Google Scholar

[51] J. Margolis, Initiation of blood coagulation by glass and related surfaces., J. Physiol. 137 (1957) 95–109.

DOI: 10.1113/jphysiol.1957.sp005799

Google Scholar

[52] B. C. Evans, C. E. Nelson, S. S. Yu, K. R. Beavers, A. J. Kim, H. Li, H. M. Nelson, T. D. Giorgio, and C. L. Duvall, Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs., J. Vis. Exp., (2013).

DOI: 10.3791/50166

Google Scholar

[53] Takara Bio Inc., LDH Cytotoxicity Detection Kit, In Vitro. 25 (2007) 712–720.

Google Scholar

[54] P. Dhas, S. Jayakumar, P. Chitra, and A. Mary, Study of the effects of hydrogen cyanide exposure in Cassava workers, Indian Journal of Occupational and Environmental Medicine. 15 (2011) 133.

DOI: 10.4103/0019-5278.93204

Google Scholar