Silicocarnotite Synthesis and Bioactivity in Artificial Saliva Medium

Article Preview

Abstract:

The aim of this study is the synthesis and investigation of bioactive response of acrystalline silicophosphate.A monophasic silicocarnotite was elaborated by solid state reaction from a mixture of beta-tricaliciumphosphate and dicalcium silicate based on mussel shells according to the diagram of system Ca3(PO4 )2 –Ca2SiO4, at 65 % and 35% respectively , these starting materials are heated up to 1450 °C to obtain a monophasic silicocaronitite. The obtained result probed that the main crystalline phase which was detected and recognized in the heated sample at 1400 and 1450 °C was a well-crystallized silicocarnotite. The test of bioactivity of silicocarnotite in artificial saliva causes the appearance of a reaction layer on the materials surface after 4 hours soaking and growth up during 30 days.This layer is constituted of a biphasic mixture of Si–Ca–P–H material, silicated hydroxyapatite and hydroxyapatite phase are the mainly developing ones with increasing soaking time.The analysis and characterization of the precipitated appearing on the material surface has confirmed experimentally the in vitro bioactivity of silicocarnotite monophasic material.

You might also be interested in these eBooks

Info:

Pages:

38-46

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yuan-Chien Chen M-YS, Yuan-Haw Andrew Wu, Kai-Xing Alvin Lee, Li-Ju Wei, Yu-Fang Shen. Anti-inflammation performance of curcumin-loaded mesoporous calcium silicate cement. Journal of the Formosan Medical Association. 116(2017) 679-88.

DOI: 10.1016/j.jfma.2017.06.005

Google Scholar

[2] Hao-Chieh Chang CY, Fang Feng, Feng-Huei Lin, Chi-Hwa Wang , Po-Chun Chang. Bone morphogenetic protein-2 loaded poly(D,L-lactide-co-glycolide) microspheres enhance osteogenic potential of gelatin/ hydroxyapatite/b-tricalcium phosphate cryogel composite for alveolar ridge augmentation. Journal of the Formosan Medical Association.116 (2017).

DOI: 10.1016/j.jfma.2017.01.005

Google Scholar

[3] A. Boukhlif et al. Numerical Evaluation of Biomechanical Stresses in Dental Bridges Supported by Dental Implants. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 37 (2018) 43-54.

DOI: 10.4028/www.scientific.net/jbbbe.37.43

Google Scholar

[4] F. Qulub et al. Synthesis and Characterization of Composite Poly(1.8 Octanediol-co-Citrate) (POC)/Nano-Hydroxyapatite as Candidate Biodegradable Bone Screw. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 27 (2016) 36-43.

DOI: 10.4028/www.scientific.net/jbbbe.27.36

Google Scholar

[5] L. Grima et al. Preparation and Characterization of Novel Bioceramic Coatings on Ti6Al4V Substrates for Biomedical Applications. Key Engineering Materials. 758 (2017) 39-43.

DOI: 10.4028/www.scientific.net/kem.758.39

Google Scholar

[6] Khan AF, Saleem M, Afzal A, Ali A, Khan A, Khan AR. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Materials Science and Engineering: C. 35 (2014) 245-52.

DOI: 10.1016/j.msec.2013.11.013

Google Scholar

[7] Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 28 (2007) 4023-32.

DOI: 10.1016/j.biomaterials.2007.05.003

Google Scholar

[8] Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials. 24 (2003) 4609-20.

DOI: 10.1016/s0142-9612(03)00355-7

Google Scholar

[9] Palard M, Combes J, Champion E, Foucaud S, Rattner A, Bernache-Assollant D. Effect of silicon content on the sintering and biological behaviour of Ca10(PO4)6-x(SiO4)x(OH)2-x ceramics. Acta Biomaterialia. 5 (2009) 1223-32.

DOI: 10.1016/j.actbio.2008.10.016

Google Scholar

[10] Padilla S, Román J, Sánchez-Salcedo S, Vallet-Regí M. Hydroxyapatite/SiO2–CaO–P2O5 glass materials: In vitro bioactivity and biocompatibility. Acta Biomaterialia. 2 (2006) 331-42.

DOI: 10.1016/j.actbio.2006.01.006

Google Scholar

[11] Martínez IM, Meseguer-Olmo L, Bernabeu-Esclapez A, Velásquez PA, De Aza PN. In vitro behavior of α-tricalcium phosphate doped with dicalcium silicate in the system Ca2SiO4–Ca3(PO4)2. Materials Characterization. 63 (2012) 47-55.

DOI: 10.1016/j.matchar.2011.10.013

Google Scholar

[12] Martínez IM, Velásquez P, Meseguer-Olmo L, Bernabeu-Esclapez A, De Aza PN. Preparation and characterization of novel bioactive α-Tricalcium Phosphate doped with Dicalcium Silicate ceramics. Materials Science and Engineering: C. 32 (2012) 878-86.

DOI: 10.1016/j.msec.2012.02.006

Google Scholar

[13] De Aza PN, García-Bernal D, Cragnolini F, Velasquez P, Meseguer-Olmo L. The effects of Ca2SiO4–Ca3(PO4)2 ceramics on adult human mesenchymal stem cell viability, adhesion, proliferation, differentiation and function. Materials Science and Engineering: C. 33 (2013).

DOI: 10.1016/j.msec.2013.05.043

Google Scholar

[14] Gomes S, Renaudin G, Mesbah A, Jallot E, Bonhomme C, Babonneau F, et al. Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: A multi-technique study. Acta Biomaterialia. 6 (2010) 3264-74.

DOI: 10.1016/j.actbio.2010.02.034

Google Scholar

[15] Kao C-T, Huang T-H, Chen Y-J, Hung C, Jr., Lin C-C, Shie M-Y. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement. Materials Science and Engineering: C. 43 (2014).

DOI: 10.1016/j.msec.2014.06.030

Google Scholar

[16] Serena S, Caballero A, de Aza PN, Sainz MA. New evaluation of the in vitro response of silicocarnotite monophasic material. Ceramics International. 41 (2015) 9411-9.

DOI: 10.1016/j.ceramint.2015.03.319

Google Scholar

[17] Bulina NV, Chaikina MV, Gerasimov KB, Ishchenko AV, Dudina DV. A novel approach to the synthesis of silicocarnotite. Materials Letters. 164 (2016) 255-9.

DOI: 10.1016/j.matlet.2015.10.047

Google Scholar

[18] Palard M, Champion E, Foucaud S. Synthesis of silicated hydroxyapatite Ca10(PO4)6−x(SiO4)x(OH)2−x. Journal of Solid State Chemistry. 181 (2008) 1950-60.

DOI: 10.1016/j.jssc.2008.04.027

Google Scholar

[19] Fix W, Heymann H, Heinke R. Subsolidus Relations in the System 2CaO·SiO2-3CaO·P2O5. Journal of the American Ceramic Society. 52 (1969) 346-7.

DOI: 10.1111/j.1151-2916.1969.tb11948.x

Google Scholar

[20] A. Bouregba H. Ez-Zaki, A. Diouri, O. Sassi. β-Dicalcium Silicate Cement Modified with β-Tricalcium Phosphate: In Vitro Bioactivity and Mechanical Strength. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 35 (2018) 9-19.

DOI: 10.4028/www.scientific.net/jbbbe.35.9

Google Scholar

[21] A. Bouregba A. Diouri. Potential formation of hydroxyapatite in total blood and dicalcium silicate elaborated from shell and glass powders. Materials Letters. 183 (2016) 405–7.

DOI: 10.1016/j.matlet.2016.07.153

Google Scholar

[22] Gal J-Y, Fovet Y, Adib-Yadzi M. About a synthetic saliva for in vitro studies. Talanta. 53 (2001) 1103-15.

DOI: 10.1016/s0039-9140(00)00618-4

Google Scholar

[23] Deliormanlı AM. Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications. Ceramics International. 43 (2017) 3531-9.

DOI: 10.1016/j.ceramint.2016.11.078

Google Scholar

[24] F.Triviňo FPa. Examinations by Infra-Red Spectroscopy for the polymorphs of dicalcium Silicate. Cement and Concrete Reserch. 15 (1985) 127-33.

DOI: 10.1016/0008-8846(85)90017-1

Google Scholar

[25] Serena S, Sainz MA, Caballero A. Single-phase silicocarnotite synthesis in the subsystem Ca3(PO4)2–Ca2SiO4. Ceramics International. 40 (2014) 8245-52.

DOI: 10.1016/j.ceramint.2014.01.022

Google Scholar

[26] Hench LL. Bioceramics. J Am Ceram Soc. 81 (1998) 1705–28.

Google Scholar