[1]
Odstrcilik, J., Kolar, R., Kubena, T., Cernosek, P., Budai, A., & Hornegger, J. et al. (2013).
Google Scholar
[2]
Stella Mary, M., Rajsingh, E., & Naik, G. (2016). Retinal Fundus Image Analysis for Diagnosis of Glaucoma: A Comprehensive Survey. IEEE Access, 4, 4327-4354. http://dx.doi.org/10.1109/access.2016.2596761.
DOI: 10.1109/access.2016.2596761
Google Scholar
[3]
Glaucoma Facts and Stats. (2017). Glaucoma Research Foundation. Retrieved 2 May 2017, from https://www.glaucoma.org/glaucoma/glaucoma-facts-and-stats.php.
DOI: 10.1097/00061198-199400340-00001
Google Scholar
[4]
High-Resolution Fundus (HRF) Image Database. (2017). Www5.cs.fau.de. Retrieved 10 March 2017, from https://www5.cs.fau.de/RESEARCH/DATA/FUNDUS-IMAGES.
Google Scholar
[5]
What Is Diabetic Retinopathy? (2017). American Academy of Ophthalmology. Retrieved 4 May 2017, from https://www.aao.org/EYE-HEALTH/DISEASES/WHAT-IS-DIABETIC-RETINOPATHY.
Google Scholar
[6]
Kauppi, T., Kalesnykiene, V., Kamarainen, J. K., Lensu, L., Sorri, I., Raninen, A., ... & Pietilä, J. (2007, September). The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol. In BMVC (pp.1-10).
DOI: 10.5244/c.21.15
Google Scholar
[7]
Zhuo Zhang, Feng Shou Yin, Jiang Liu, Wing Kee Wong, Ngan Meng Tan, & Beng Hai Lee et al. (2010).
DOI: 10.1109/iembs.2010.5626137
Google Scholar
[8]
Hoover, A., Kouznetsova, V., & Goldbaum, M. (2000). Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions On Medical Imaging, 19(3), 203-210. http://dx.doi.org/10.1109/42.845178.
DOI: 10.1109/42.845178
Google Scholar
[9]
Sivaswamy, J., Krishnadas, S. R., Chakravarty, A., Joshi, G. D., & Tabish, A. S. (2015). A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomedical Imaging Data Papers, 2(1), 1004.
DOI: 10.1109/isbi.2014.6867807
Google Scholar
[10]
Gonzalez, R., Eddins, S., & Woods, R. (2009). Digital image processing using MATLAB. New Delhi: Pearson Education.
Google Scholar
[11]
Wichman, R., & Neuvo, Y. Multilevel median filters for image processing. 1991., IEEE International Sympoisum on Circuits And Systems. http://dx.doi.org/10.1109/iscas.1991.176361.
DOI: 10.1109/iscas.1991.176361
Google Scholar
[12]
Jiang, Z., Yepez, J., An, S., & Ko, S. (2017). Fast, accurate and robust retinal vessel segmentation system. Biocybernetics And Biomedical Engineering, 37(3), 412-421. http://dx.doi.org/10.1016/j.bbe.2017.04.001.
DOI: 10.1016/j.bbe.2017.04.001
Google Scholar
[13]
Dhawan, A. (2011). Medical image analysis. Hoboken: A John Wiley & Sons, Inc., Publication.
Google Scholar
[14]
Sund, T., & Eilertsen, K. (2003). An algorithm for fast adaptive image binarization with applications in radiotherapy imaging. IEEE Transactions On Medical Imaging, 22(1), 22-28. http://dx.doi.org/10.1109/tmi.2002.806431.
DOI: 10.1109/tmi.2002.806431
Google Scholar
[15]
Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions On Systems, Man, And Cybernetics, 9(1), 62-66. http://dx.doi.org/10.1109/tsmc.1979.4310076.
DOI: 10.1109/tsmc.1979.4310076
Google Scholar
[16]
Krishnan, m., & faust, o. (2013). Automated glaucoma detection using hybrid feature extraction in retinal fundus images. Journal of Mechanics in Medicine And Biology, 13(01), 1350011. http://dx.doi.org/10.1142/s0219519413500115.
DOI: 10.1142/s0219519413500115
Google Scholar
[17]
Fang, G., Yang, N., Lu, H., & Li, K. (2010).
Google Scholar
[18]
Panda, R., N.B., P., & Panda, G. (2017). Robust and accurate optic disk localization using vessel symmetry line measure in fundus images. Biocybernetics And Biomedical Engineering, 37(3), 466-476. http://dx.doi.org/10.1016/j.bbe.2017.05.008.
DOI: 10.1016/j.bbe.2017.05.008
Google Scholar
[19]
FEROUI, A., MESSADI, M., HADJIDJ, I., & BESSAID, A. (2013). NEW SEGMENTATION METHODOLOGY FOR EXUDATE DETECTION IN COLOR FUNDUS IMAGES. Journal of Mechanics In Medicine And Biology, 13(01), 1350014. http://dx.doi.org/10.1142/s0219519413500140.
DOI: 10.1142/s0219519413500140
Google Scholar
[20]
Vlachos, M., & Dermatas, E. (2010). Multi-scale retinal vessel segmentation using line tracking. Computerized Medical Imaging And Graphics, 34(3), 213-227. http://dx.doi.org/10.1016/j.compmedimag.2009.09.006.
DOI: 10.1016/j.compmedimag.2009.09.006
Google Scholar
[21]
Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., & van Ginneken, B. (2004). Ridge-Based Vessel Segmentation in Color Images of the Retina. IEEE Transactions On Medical Imaging, 23(4), 501-509. http://dx.doi.org/10.1109/tmi.2004.825627.
DOI: 10.1109/tmi.2004.825627
Google Scholar
[22]
Ricci, E., & Perfetti, R. (2007). Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification. IEEE Transactions On Medical Imaging, 26(10), 1357-1365. http://dx.doi.org/10.1109/tmi.2007.898551.
DOI: 10.1109/tmi.2007.898551
Google Scholar
[23]
Meier, J., Bock, R., Michelson, G., Nyúl, L., & Hornegger, J. Effects of Preprocessing Eye Fundus Images on Appearance Based Glaucoma Classification. Computer Analysis Of Images And Patterns, 165-172. http://dx.doi.org/10.1007/978-3-540-74272-2_21.
DOI: 10.1007/978-3-540-74272-2_21
Google Scholar
[24]
Lupascu, C., Tegolo, D., & Trucco, E. (2010). FABC: Retinal Vessel Segmentation Using AdaBoost. IEEE Transactions on Information Technology In Biomedicine, 14(5), 1267-1274. http://dx.doi.org/10.1109/titb.2010.2052282.
DOI: 10.1109/titb.2010.2052282
Google Scholar
[25]
FANG, B., YOU, X., TANG, Y., & CHEN, W. (2005).
Google Scholar
[26]
Mapayi, T., Viriri, S., & Tapamo, J. (2015). Comparative Study of Retinal Vessel Segmentation Based on Global Thresholding Techniques. Computational and Mathematical Methods In Medicine, 2015, 1-15. http://dx.doi.org/10.1155/2015/895267.
DOI: 10.1155/2015/895267
Google Scholar
[27]
Vostatek, P., Claridge, E., Uusitalo, H., Hauta-Kasari, M., Fält, P., & Lensu, L. (2017).
DOI: 10.1016/j.compmedimag.2016.07.005
Google Scholar
[28]
McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin Of Mathematical Biophysics, 5(4), 115-133. http://dx.doi.org/10.1007/bf02478259.
DOI: 10.1007/bf02478259
Google Scholar
[29]
Hebb, D. (2012). The organization of behavior. New York : Routledge.
Google Scholar
[30]
Roy, A. (2000). Artificial neural networks. ACM SIGKDD Explorations Newsletter, 1(2), 33. http://dx.doi.org/10.1145/846183.846192.
Google Scholar
[31]
McClelland, J., & Rumelhart, D. (1999). Parallel distributed processing. Cambridge, Mass: MIT Press.
Google Scholar
[32]
Posner, M. (1998). Foundations of cognitive science. Cambridge, Mass.: The MIT Press.
Google Scholar
[33]
Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks, 1(1), 17-61. http://dx.doi.org/10.1016/0893-6080(88)90021-4.
DOI: 10.1016/0893-6080(88)90021-4
Google Scholar
[34]
Moody, J., & Darken, C. (1989). Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation, 1(2), 281-294. http://dx.doi.org/10.1162/neco.1989.1.2.281.
DOI: 10.1162/neco.1989.1.2.281
Google Scholar
[35]
LiMin Fu, Hui-Huang Hsu, & Principe, J. (1996). Incremental backpropagation learning networks. IEEE Transactions on Neural Networks, 7(3), 757-761. http://dx.doi.org/10.1109/72.501732.
DOI: 10.1109/72.501732
Google Scholar
[36]
Harini, R. and Sheela, N., 2016, August. Feature extraction and classification of retinal images for automated detection of Diabetic Retinopathy. In Cognitive Computing and Information Processing (CCIP), 2016 Second International Conference on (pp.1-4.
DOI: 10.1109/ccip.2016.7802862
Google Scholar
[37]
Cusano, C., Ciocca, G. and Schettini, R., 2003, December. Image annotation using SVM. In Internet imaging V (Vol. 5304, pp.330-339). International Society for Optics and Photonics. https://doi.org/10.1117/12.526746.
DOI: 10.1117/12.526746
Google Scholar
[38]
Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J. and Scholkopf, B., 1998. Support vector machines. IEEE Intelligent Systems and their applications, 13(4), pp.18-28. https://doi.org/10.1109/5254.708428.
DOI: 10.1109/5254.708428
Google Scholar
[39]
Song, F., Guo, Z., & Mei, D. (2010). Feature Selection Using Principal Component Analysis. 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization. http://dx.doi.org/10.1109/icsem.2010.14.
DOI: 10.1109/icsem.2010.14
Google Scholar