Employing Image Processing Techniques and Artificial Intelligence for Automated Eye Diagnosis Using Digital Eye Fundus Images

Article Preview

Abstract:

Blindness usually comes from two main causes, glaucoma and diabetes. Robust mass screening is performed for diagnosing, such as screening that requires a cost-effective method for glaucoma and diabetic retinopathy and integrates well with digital medical imaging, image processing, and administrative processes. For addressing all these issues, we propose a novel low-cost automated glaucoma and diabetic retinopathy diagnosis system, based on features extraction from digital eye fundus images. This paper proposes a diagnosis system for automated identification of healthy, glaucoma, and diabetic retinopathy. Using a combination of local binary pattern features, Gabor filter features, statistical features, and color features which are then fed to an artificial neural network and support vector machine classifiers. In this work, the classifier identifies healthy, glaucoma, and diabetic retinopathy images with an accuracy of 91.1%,92.9%, 92.9%, and 92.3% and sensitivity of 91.06%, 92.6%, 92.66%, and 91.73% and specificity of 89.83%, 91.26%, 91.96%, and 89.16% for ANN, and an accuracy of 90.0%,92.94%, 95.43%, and 97.92% and sensitivity of 89.34%, 93.26%, 95.72%, and 97.93% and specificity of 95.13%, 96.68%, 97.88%, and 99.05% for SVM, based on 5, 10, 15, and 31 number of selected features. The proposed system can detect glaucoma, diabetic retinopathy and normal cases with high accuracy and sensitivity using selected features, the performance of the system is high due to using of a huge fundus database.

You might also be interested in these eBooks

Info:

Pages:

40-56

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Odstrcilik, J., Kolar, R., Kubena, T., Cernosek, P., Budai, A., & Hornegger, J. et al. (2013).

Google Scholar

[2] Stella Mary, M., Rajsingh, E., & Naik, G. (2016). Retinal Fundus Image Analysis for Diagnosis of Glaucoma: A Comprehensive Survey. IEEE Access, 4, 4327-4354. http://dx.doi.org/10.1109/access.2016.2596761.

DOI: 10.1109/access.2016.2596761

Google Scholar

[3] Glaucoma Facts and Stats. (2017). Glaucoma Research Foundation. Retrieved 2 May 2017, from https://www.glaucoma.org/glaucoma/glaucoma-facts-and-stats.php.

DOI: 10.1097/00061198-199400340-00001

Google Scholar

[4] High-Resolution Fundus (HRF) Image Database. (2017). Www5.cs.fau.de. Retrieved 10 March 2017, from https://www5.cs.fau.de/RESEARCH/DATA/FUNDUS-IMAGES.

Google Scholar

[5] What Is Diabetic Retinopathy? (2017). American Academy of Ophthalmology. Retrieved 4 May 2017, from https://www.aao.org/EYE-HEALTH/DISEASES/WHAT-IS-DIABETIC-RETINOPATHY.

Google Scholar

[6] Kauppi, T., Kalesnykiene, V., Kamarainen, J. K., Lensu, L., Sorri, I., Raninen, A., ... & Pietilä, J. (2007, September). The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol. In BMVC (pp.1-10).

DOI: 10.5244/c.21.15

Google Scholar

[7] Zhuo Zhang, Feng Shou Yin, Jiang Liu, Wing Kee Wong, Ngan Meng Tan, & Beng Hai Lee et al. (2010).

DOI: 10.1109/iembs.2010.5626137

Google Scholar

[8] Hoover, A., Kouznetsova, V., & Goldbaum, M. (2000). Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions On Medical Imaging, 19(3), 203-210. http://dx.doi.org/10.1109/42.845178.

DOI: 10.1109/42.845178

Google Scholar

[9] Sivaswamy, J., Krishnadas, S. R., Chakravarty, A., Joshi, G. D., & Tabish, A. S. (2015). A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomedical Imaging Data Papers, 2(1), 1004.

DOI: 10.1109/isbi.2014.6867807

Google Scholar

[10] Gonzalez, R., Eddins, S., & Woods, R. (2009). Digital image processing using MATLAB. New Delhi: Pearson Education.

Google Scholar

[11] Wichman, R., & Neuvo, Y. Multilevel median filters for image processing. 1991., IEEE International Sympoisum on Circuits And Systems. http://dx.doi.org/10.1109/iscas.1991.176361.

DOI: 10.1109/iscas.1991.176361

Google Scholar

[12] Jiang, Z., Yepez, J., An, S., & Ko, S. (2017). Fast, accurate and robust retinal vessel segmentation system. Biocybernetics And Biomedical Engineering, 37(3), 412-421. http://dx.doi.org/10.1016/j.bbe.2017.04.001.

DOI: 10.1016/j.bbe.2017.04.001

Google Scholar

[13] Dhawan, A. (2011). Medical image analysis. Hoboken: A John Wiley & Sons, Inc., Publication.

Google Scholar

[14] Sund, T., & Eilertsen, K. (2003). An algorithm for fast adaptive image binarization with applications in radiotherapy imaging. IEEE Transactions On Medical Imaging, 22(1), 22-28. http://dx.doi.org/10.1109/tmi.2002.806431.

DOI: 10.1109/tmi.2002.806431

Google Scholar

[15] Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions On Systems, Man, And Cybernetics, 9(1), 62-66. http://dx.doi.org/10.1109/tsmc.1979.4310076.

DOI: 10.1109/tsmc.1979.4310076

Google Scholar

[16] Krishnan, m., & faust, o. (2013). Automated glaucoma detection using hybrid feature extraction in retinal fundus images. Journal of Mechanics in Medicine And Biology, 13(01), 1350011. http://dx.doi.org/10.1142/s0219519413500115.

DOI: 10.1142/s0219519413500115

Google Scholar

[17] Fang, G., Yang, N., Lu, H., & Li, K. (2010).

Google Scholar

[18] Panda, R., N.B., P., & Panda, G. (2017). Robust and accurate optic disk localization using vessel symmetry line measure in fundus images. Biocybernetics And Biomedical Engineering, 37(3), 466-476. http://dx.doi.org/10.1016/j.bbe.2017.05.008.

DOI: 10.1016/j.bbe.2017.05.008

Google Scholar

[19] FEROUI, A., MESSADI, M., HADJIDJ, I., & BESSAID, A. (2013). NEW SEGMENTATION METHODOLOGY FOR EXUDATE DETECTION IN COLOR FUNDUS IMAGES. Journal of Mechanics In Medicine And Biology, 13(01), 1350014. http://dx.doi.org/10.1142/s0219519413500140.

DOI: 10.1142/s0219519413500140

Google Scholar

[20] Vlachos, M., & Dermatas, E. (2010). Multi-scale retinal vessel segmentation using line tracking. Computerized Medical Imaging And Graphics, 34(3), 213-227. http://dx.doi.org/10.1016/j.compmedimag.2009.09.006.

DOI: 10.1016/j.compmedimag.2009.09.006

Google Scholar

[21] Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., & van Ginneken, B. (2004). Ridge-Based Vessel Segmentation in Color Images of the Retina. IEEE Transactions On Medical Imaging, 23(4), 501-509. http://dx.doi.org/10.1109/tmi.2004.825627.

DOI: 10.1109/tmi.2004.825627

Google Scholar

[22] Ricci, E., & Perfetti, R. (2007). Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification. IEEE Transactions On Medical Imaging, 26(10), 1357-1365. http://dx.doi.org/10.1109/tmi.2007.898551.

DOI: 10.1109/tmi.2007.898551

Google Scholar

[23] Meier, J., Bock, R., Michelson, G., Nyúl, L., & Hornegger, J. Effects of Preprocessing Eye Fundus Images on Appearance Based Glaucoma Classification. Computer Analysis Of Images And Patterns, 165-172. http://dx.doi.org/10.1007/978-3-540-74272-2_21.

DOI: 10.1007/978-3-540-74272-2_21

Google Scholar

[24] Lupascu, C., Tegolo, D., & Trucco, E. (2010). FABC: Retinal Vessel Segmentation Using AdaBoost. IEEE Transactions on Information Technology In Biomedicine, 14(5), 1267-1274. http://dx.doi.org/10.1109/titb.2010.2052282.

DOI: 10.1109/titb.2010.2052282

Google Scholar

[25] FANG, B., YOU, X., TANG, Y., & CHEN, W. (2005).

Google Scholar

[26] Mapayi, T., Viriri, S., & Tapamo, J. (2015). Comparative Study of Retinal Vessel Segmentation Based on Global Thresholding Techniques. Computational and Mathematical Methods In Medicine, 2015, 1-15. http://dx.doi.org/10.1155/2015/895267.

DOI: 10.1155/2015/895267

Google Scholar

[27] Vostatek, P., Claridge, E., Uusitalo, H., Hauta-Kasari, M., Fält, P., & Lensu, L. (2017).

DOI: 10.1016/j.compmedimag.2016.07.005

Google Scholar

[28] McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin Of Mathematical Biophysics, 5(4), 115-133. http://dx.doi.org/10.1007/bf02478259.

DOI: 10.1007/bf02478259

Google Scholar

[29] Hebb, D. (2012). The organization of behavior. New York : Routledge.

Google Scholar

[30] Roy, A. (2000). Artificial neural networks. ACM SIGKDD Explorations Newsletter, 1(2), 33. http://dx.doi.org/10.1145/846183.846192.

Google Scholar

[31] McClelland, J., & Rumelhart, D. (1999). Parallel distributed processing. Cambridge, Mass: MIT Press.

Google Scholar

[32] Posner, M. (1998). Foundations of cognitive science. Cambridge, Mass.: The MIT Press.

Google Scholar

[33] Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks, 1(1), 17-61. http://dx.doi.org/10.1016/0893-6080(88)90021-4.

DOI: 10.1016/0893-6080(88)90021-4

Google Scholar

[34] Moody, J., & Darken, C. (1989). Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation, 1(2), 281-294. http://dx.doi.org/10.1162/neco.1989.1.2.281.

DOI: 10.1162/neco.1989.1.2.281

Google Scholar

[35] LiMin Fu, Hui-Huang Hsu, & Principe, J. (1996). Incremental backpropagation learning networks. IEEE Transactions on Neural Networks, 7(3), 757-761. http://dx.doi.org/10.1109/72.501732.

DOI: 10.1109/72.501732

Google Scholar

[36] Harini, R. and Sheela, N., 2016, August. Feature extraction and classification of retinal images for automated detection of Diabetic Retinopathy. In Cognitive Computing and Information Processing (CCIP), 2016 Second International Conference on (pp.1-4.

DOI: 10.1109/ccip.2016.7802862

Google Scholar

[37] Cusano, C., Ciocca, G. and Schettini, R., 2003, December. Image annotation using SVM. In Internet imaging V (Vol. 5304, pp.330-339). International Society for Optics and Photonics. https://doi.org/10.1117/12.526746.

DOI: 10.1117/12.526746

Google Scholar

[38] Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J. and Scholkopf, B., 1998. Support vector machines. IEEE Intelligent Systems and their applications, 13(4), pp.18-28. https://doi.org/10.1109/5254.708428.

DOI: 10.1109/5254.708428

Google Scholar

[39] Song, F., Guo, Z., & Mei, D. (2010). Feature Selection Using Principal Component Analysis. 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization. http://dx.doi.org/10.1109/icsem.2010.14.

DOI: 10.1109/icsem.2010.14

Google Scholar